ESTUDO DA DEGRADAÇÃO HIDROTERMAL DE NANOCOMPÓSITOS Al₂O₃-15%vol. ZrO₂

C. L. Ojaimi^{1*}, A. S. A. Chinelatto¹, A. L. Chinelatto¹, E. M. J. A. Pallone², J. A. Ferreira²

¹ Universidade Estadual de Ponta Grossa, ² Universidade de São Paulo- Faculdade de Zootecnia e Engenharia de Alimentos

¹Av. General Carlos Cavalcanti, 4748 - CEP 84.030-900 - Ponta Grossa –Paraná-Brasil ²Av. Duque de Caxias Norte, 225 – CEP 13.635-900 – Pirassununga – São Paulo -Brasil

^{*}christianelago@yahoo.com.br

RESUMO

A zircônia estabilizada é susceptível à degradação hidrotermal a baixa temperatura. Esse fenômeno ocorre pela transformação da fase tetragonal para monoclínica na presença de água ou fluído de forma lenta e gradual, podendo causar fratura da peça. Na área de biomateriais, dependendo da aplicação da zircônia, o efeito da degradação torna-se crítico. Assim, como zircônia e alumina são as cerâmicas mais utilizadas como biomateriais, o objetivo deste trabalho foi estudar o efeito da degradação hidrotermal de nanocompósitos de alumina-15%vol zircônia nanométrica. Para isso, as amostras foram produzidas por prensagem isostática e foram sinterizadas em diferentes condições de sinterização. O ensaio de envelhecimento acelerado em autoclave foi realizado para a avaliação da estabilidade do material e foi feito por 5 e 10 horas e a caracterização realizada por difração de raios X e microscopia de força atômica mostrou que os nanocompósitos apresentam resistência à degradação hidrotermal.

Palavras chave: Nanocompósito, alumina, zircônia, degradação hidrotermal.

INTRODUÇÃO

A alumina e a zircônia são os materiais cerâmicos mais empregados na área de biomateriais⁽¹⁾. As suas excelentes propriedades, como resistência mecânica, biocompatibilidade e boa resistência ao desgaste garantiram o uso desses materiais na área biomédica⁽²⁾.

A alumina é a mais amplamente utilizada devido à sua biocompatibilidade e boa resistência ao desgaste, mas exibe moderada resistência à flexão e tenacidade à fratura⁽³⁾. Assim, mais recentemente a zircônia vem sendo também utilizada, pois também é inerte em meio fisiológico, apresenta menor módulo de elasticidade, maior resistência à flexão e maior tenacidade à fratura quando comparada com a alumina pura⁽⁴⁾.

O polimorfismo da zircônia restringe o seu uso na indústria cerâmica, pois durante o aquecimento, a mudança de volume associada à transformação da zircônia da fase tetragonal para fase monoclínica é do tipo martensítica, sendo acompanhada por um aumento de volume de 3 a 5 %, o que é suficiente para exceder o limite elástico mesmo em pequenos grãos de zircônia monoclínica. Esta expansão de volume somente pode ser acomodada pela formação de trincas, o que inviabiliza a utilização da zircônia pura em muitas aplicações⁽²⁾. Porém, com a adição de alguns óxidos (MgO, CaO, CeO₂, Y₂O₃ e terras raras), as fases cúbica e tetragonal podem ser parcialmente ou totalmente estabilizadas na temperatura ambiente, possibilitando a obtenção de propriedades mecânicas necessárias para sua utilização⁽⁵⁾. A estabilização da fase tetragonal é responsável pela alta tenacidade à fratura da zircônia tetragonal policristalina estabilizada com ítria (Y-TZP)⁽⁶⁾.

No entanto, o envelhecimento a baixas temperaturas da zircônia é um fenômeno que vem sendo relatado na literatura e que traz como consequências a degradação superficial e microtrincas que podem comprometer a resistência do material. O envelhecimento consiste na reversão da fase tetragonal metaestável para a fase monoclínica mais estável, a baixa temperatura, na presença de água ou vapor. Os resultados de envelhecimento se traduz numa diminuição da resistência mecânica, aumento da rugosidade e arrancamento de grãos ("pullgrain")⁽⁷⁾.

Assim, devido à moderada tenacidade à fratura da alumina⁽⁸⁾ e o problema de degradação hidrotermal da zircônia, a possibilidade de utilização de nanocompósitos

2534

de alumina-zircônia mostra-se bastante interessante para o uso como biomateriais. Além disso, como a sinterização afeta a microestrutura⁽⁹⁾ e as pesquisas na área de nanocompósitos vem mostrando grande avanço afim de aprimorar as propriedades finais, o controle da etapa de sinterização é essencial para se obter nanocompósitos densos e com microestrutura homogênea. Uma das maneiras de controlar a microestrutura desses nanocompósitos é a sinterização em etapas, que permite um controle eficiente de crescimento de grão e é bastante simples e barata.

Assim, este trabalho teve como objetivo estudar o efeito da degradação hidrotermal de nanocompósitos de alumina-15%vol zircônia nanométrica, sinterizados convencionalmente e em etapas.

MATERIAIS E MÉTODOS

Na realização desse trabalho utilizou-se pó comercial de Al_2O_3 (pureza 99,995%, diâmetro médio de partícula 0,2 µm e área superficial específica 13,6 m²/g, tipo AKP-53, Sumitomo ChemicalCo., Japão) e ZrO₂ nanométrica (pureza 99,9%, monoclínica, com tamanhos de partículas primárias 60 a 100 nm, área superficial específica 20 a 30 m²/g, densidade 5,89 g/cm³, NanostructuredMaterials Inc.).

O procedimento para a mistura dos pós e conformação dos corpos de prova foram realizados conforme a referência (10). Os corpos-de-prova a verde foram caracterizados por medidas de densidade geométrica e difração de raios X (difratômetroSchimadzu, modelo XRD-6000). As amostras foram sinterizadas convencionalmente e em etapas num forno elétrico Lindberg/Blue, As condições de sinterização dos nanocompósitos estão apresentadas na Tabela 1.

rabola 1. romporatarao atilizadao na omonzação doo corpos do prova.								
Método	Taxa de	T1	Patamar	T2	Patamar	T3	Patamar	
	aquecimento	(\mathbf{C})		(\mathbf{C})		(°C)		
Convencional	15ºC/min	1600	2h	-	-	-	-	
Em etapas	15ºC/min	1100	2h	1600	2h	-	-	
		1450	5min	1400	2h	-	-	
		1450	5min	1400	4h	-	-	
		1450	5min	1400	8h	-	-	
		1100	2h	1420	5min	1380	4h	
		1100	2h	1450	5min	1400	4h	

Tabela 1: Temperaturas utilizadas na sinterização dos corpos de prova.

A caracterização dos nanocompósitos sinterizados foi feita por medidas de densidade aparente e tamanho médio de grão. Para as medidas de tamanho de grão, as amostras foram embutidas, lixadas, polidas e atacadas termicamente.

Para o ensaio de envelhecimento acelerado, as amostras sinterizadas foram colocadas em vidros e imersas em 10ml de saliva artificial. Para o ensaio foi utilizada uma autoclave da marca Cristófoli, modelo: Vitale 12, a 127ºC com pressão de 1,5 Kgf/cm². As amostras foram deixadas na autoclave durante 5 e 10 horas.

A avaliação da degradação hidrotermal nas amostras foi feita por difração de raios X antes e após 5 e 10 horas de envelhecimento. Os difratogramas foram obtidos num intervalo de varredura de 20 de 26º a 33º, com passo de 0,01º e tempo de contagem por ponto de 5 segundos. Para se determinar a quantidade de fase monoclínica foi utilizada a equação (A) e (B).

$$X_{m} = \frac{I_{m}(\bar{1}11) + I_{m}(111)}{I_{m}(\bar{1}11) + I_{m}(111) + I_{t}(101)}$$
(A)

$$V_m = \frac{1.311X_m}{1 + 0.311X_m} \tag{B}$$

Onde I_m (hkl) corresponde a intensidade integrada do pico de difração da fase monoclínica, I_t (hkl) corresponde à intensidade integrada do pico de difração da fase tetragonal e V_m corresponde a fração volumétrica da fase monoclínica. Os índices de Miller (hkl) correspondem aos planos da fase tetragonal e monoclínica⁽¹¹⁾.

A caracterização foi feita também por microscopia de força atômica num equipamento Schimadzu modelo: SPM 9600. Foram feitas imagens com resolução 512x512, modo contato, velocidade de varredura de 0,5Hz e tamanho da área varrida de 5, 2 e 1 μ m². As imagens foram feitas antes e após 10 horas de envelhecimento.

Para efeito de comparação foram caracterizadas, juntamente com os nancompósitos, duas amostras de zircônia estabilizada com ítria, sendo que uma delas foi produzida utilizando a zircônia TZ-3Y-E da Tosoh Corporation e a outra amostra de zircônia consistia de uma zircôna comercial (Zirkonzahn), que foi preparada a partir de discos fresáveis para sistema CAD/CAM. Ambas foram sinterizadas a 1600°C durante duas horas.

RESULTADOS E DISCUSSÃO

A Figura 1 mostra os difratogramas da amostra a verde e da amostra sinterizada convencionalmente a 1600°C/2h. Observa-se que na amostra a verde ocorre a presença somente da fase alumina e da zircônia monoclínica. Quando sinterizado a 1600°C, além da fase alumina e da zircônia monoclínica, observa-se também a fase da zircônia tetragonal, a qual ficou retida após a sinterização. O mesmo comportamento é encontrado nas amostras sinterizadas em duas e três etapas comprovando que mesmo utilizando partículas nanométricas de zircônia monoclínica, parte dela fica retida na fase tetragonal após a sinterização.

Figura 1- Difração de raios X das amostras a verde e sinterizada a 1600ºC por 2 horas

A Tabela 2 apresenta os resultados de densidade aparente e tamanho médio de grão das amostras sinterizadas. Observa-se que a utilização da sinterização em etapas é eficiente para controlar o crescimento de grãos dos nanocompósitos.

	Densidade	Tamanho médio de
Condições de sinterização	relativa	grão da alumina (nm)
	(%DT)	
1600ºC/2h	99,1	1116 ± 383
1100°C/2h-1600°C/2h	99,2	949,8 ± 372
1450°C/5min – 1400°C/2h	95,7	392,1 ± 151
1450°C/5min – 1400°C/4h	97,3	442,1 ± 144
1450°C/5min – 1400°C/8h	98,1	464,4 ± 151
1100°C/2h-1420°C/5min-1380°C/4h	94,5	410 ± 133
1100°C/2h-1450°C/5min-1400°C/4h	96,5	438,3 ± 146

Tabela 2: resultados obtidos das amostras sinterizadas

A figura 2 apresenta as porcentagem de fase monoclínica, calculada pelas equações (A) e (B), antes do ensaio de envelhecimento e após 5 e 10 horas de ensaio.

Figura 2 - Gráfico da variação da porcentagem da fase monoclínica com as condições de sinterização em relação ao tempo de envelhecimento.

Nota-se que ocorre pouca variação da quantidade de fase monoclínica após o envelhecimento, seja após 5 ou 10 horas de ensaio. Segundo Reyes-Rojas e colaboradores⁽¹²⁾ a baixa quantidade de fase transformada de tetragonal para monoclínica sugere que o compósito exibe estabilidade hidrotérmica.

Ocorre também uma significativa diferença de quantidade inicial de fase monoclínica dependendo da condição de sinterização. Na condição 1100ºC/2h-

1600°C/2h, a porcentagem de fase monoclínica é maior em relação às outras sinterizações feitas em etapas e à sinterização convencional. Como a zircônia utilizada neste trabalho encontrava-se totalmente na fase monoclínica, como foi observado na Figura 1, o fato da grande variação da quantidade da fase monoclínica em diferentes condições utilizadas pode ser um indicativo que a curva de sinterização afeta a transformação de fase da zircônia.

Como comparativo do material estudado em relação a zircônia estabilizada com ítria, que é muito utilizada em biomateriais, tem-se na Figura 3 os difratogramas da amostra de alumina-zircônia em comparação com as amostras de zircônia, todas sinterizadas a 1600°C por 2 horas, antes (0h) e após 5 e 10 horas de envelhecimento acelerado em autoclave.

Figura 3 - Difração de raios X das amostras: (a) Al_2O_3/ZrO_2 , (b) TZ-3Y-E e (c) zircônia comercial, sinterizadas a 1600°C por 2 horas, antes do envelhecimento(0h) e após 5 e 10 horas de envelhecimento. Os índices T e M correspondem aos picos da fase tetragonal e monoclínica respectivamente.

Observa-se que a amostra TZ-3Y-E e a zircônia comercial antes do envelhecimento não apresentam os picos de difração correspondente a fase da zircônia monoclínica, diferente da amostra Al₂O₃/ZrO₂ 1600°C/2h que, além da fase monoclínica, também apresenta retida a fase tetragonal. Após 5 horas de envelhecimento já se observa a presença de picos correspondentes a fase monoclínica nas amostras TZ-3Y-E e da zircônia comercial, os quais aumentam de intensidade após 10 horas de envelhecimento.

A Figura 4 apresenta os valores de porcentagem da fase monoclínica, calculadas a partir das equações (A) e (B), antes do envelhecimento (0h), após 5 horas e 10 horas de envelhecimento para as amostras de Al₂O₃/ZrO₂, TZ-3Y-E e a zircônia comercial, todas sinterizadas a 1600°C por 2 horas.

Tempo de envelhecimento(h)

Para as amostras TZ-3Y-E e de zircônia comercial, após 5 horas de envelhecimento, a porcentagem de fase monoclínica aumentou consideravelmente, sendo 22,4% para a TZ-3Y-E e 37,8% para a zircônia comercial. Após 10 horas de envelhecimento, a amostra TZ-3Y-E ficou com 36,1% de fase monoclínica, já a zircônia comercial permaneceu praticamente constante, com 37,2% de fase monoclínica. A amostra Al₂O₃/ZrO₂ permaneceu praticamente constante durante todo o ensaio, comprovando que esta composição, 85% vol.Al₂O₃ e 15%vol.ZrO₂ sinterizada a 1600°C por 2 horas possui uma estabilidade hidrotermal maior em relação as amostras de zircônias.

Nas análises das superfícies das amostras TZ-3Y-E e a zircônia comercial antes do envelhecimento, foram observados grãos e contornos de grãos bem definidos. Após 10 horas de envelhecimento a definição dos contornos de grão não estavam tão nítidas, houve mudança na topografia das amostras como pode-se

observar na Figura 5, nas imagens de AFM da zircônia TZ-3Y-E antes e após o envelhecimento por 10 horas.

Figura 5 -Imagens de AFM com área de $5\mu m^2$ da amostra de zircônia TZ-3Y-E, sendo: (a)imagem em 2D antes do envelhecimento; (b) imagem 2D depois de 10h de envelhecimento.

Observa-se ainda, que após o envelhecimento, ocorre a presença de pequenos grãos localizados nos contornos de grão. Cattani-Lorente e colaboradores⁽⁷⁾ em seu trabalho chamaram esses pequenos grão, presentes nos contornos, de variantes martensíticas, proveniente da transformação de fase da zircônia tetragonal para monoclínica por causa do envelhecimento hidrotermal, e que estão associadas a elevação da superfície. A presença de várias variantes forma placas martensíticas ao longo do contorno de grão.

Na Figura 6 observa-se, nas imagens de AFM da amostra Al₂O₃/ZrO₂ sinterizada a 1600°C por 2horas que, após o envelhecimento por 10h, houve uma leve perda de nitidez dos contornos de grão e poucas variantes martensíticas em comparação as amostras de zircônia.

Ressalta-se que a microscopia de força atômica é utilizada para obter evidências indiretas do envelhecimento, porém não se pode utilizar para avaliação quantitativa desse efeito no material⁽¹³⁾. As demais amostras nas outras condições de sinterização apresentaram modificações na superfície também, porém menores que em relação as amostras de zircônia.

Figura 6 - Imagens de AFM com área de $2\mu m^2$ da amostra de AI_2O_3/ZrO_2 1600°C/2h, sendo: (a)imagem em 2D antes do envelhecimento; (b) imagem 2D depois de 10h de envelhecimento.

Mesmo com essas modificações superficiais, a figura 2 mostra que as amostras possuem resistência ao envelhecimento hidrotermal, apresentado pouca variação de porcentagem monoclínica antes a pós o ensaio⁽¹⁴⁾. Isso ocorre possivelmente pelo fato da zircônia estar numa matriz rígida de alumina⁽¹⁵⁾, o que restringe a transformação de fase das partículas de zircônia tetragonal⁽¹⁶⁾. Outro fator que pode estar associado a essa maior resistência é o fato da zircônia utilizada no compósito ser monoclínica, não tendo a ítria para gerar vacâncias de oxigênio, pois para Guo⁽¹⁷⁾ a degradação a baixa temperatura da zircônia é atribuída a aniquilação das vacâncias de oxigênio pelos íon OH⁻ provenientes da umidade.

CONCLUSÃO

A amostras de alumina-zircônia apresentam excelente resistência ao envelhecimento acelerado em autoclave em relação as amostras de zircônia estabilizadas dom ítria. A amostra de zircônia comercial e a TZ-3Y-E inicialmente não apresentaram fase monoclínica e após 10 horas de ensaios indicaram respectivamente 37,2% e 36,1% de fase monoclínica.

A porcentagem de fase monoclínica varia conforme a curva de sinterização utilizada.

AGRADECIMENTOS

Os autores agradecem o apoio financeiro da CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior e a Fundação Araucária.

REFERÊNCIAS

(1) HENESS, G.; BEN-NISSAN, B. InnovativeBioceramics. **MaterialsForum**. v. 27, p. 104-114, 2004.

(2) PEREIRA, M. M.; VASCONCELOS, W. L.; ZAVAGLIA, C. A. C. Materiais cerâmicos – ciência e aplicação como biomateriais. In: ORÉFICE, R. L.; PEREIRA, M. M.; MANSUR, H. S. Biomateriais – Fundamentos & Aplicações. Rio de Janeiro: Cultura Médica, 2006. cap. 3. p.61-81.

(3) RATNER, B.D.; HOFFMAN, A.S.; SCHOEN, F.J.; LEMON, J.E. Biomaterials science: a multidisciplinary endeavor. In: RATNER, B.D.; HOFFMAN, A.S.; SCHOEN, F.J.; LEMONS, J.E. **Biomaterials science: an introduction to materials in medicine**. London: Elsevier Academic Press, 2004. p.1-9.

(4) JONES, J. R. Bioactive ceramic and glasses. In: Boccaccini, A. R.; Gough, J. E. **Tissue engineering using ceramics and polymers.** Cambridge: Woodhead Publishing Limited, 2007. Cap. 3. p. 52-71.

(5) LEE, W. E.; RAINFORTH, W. M. **Ceramic Microstructures.** London: Chapman & Hall, 1994, 590p.

(6) ANDREIUOLO, R.; GONÇALVES, S. A.; DIAS, K. R. H. C. A zircônia na Odontologia Restauradora. **Rev. bras. odontol.,**v. 68, n. 1, p. 49-53, 2011.

(7) CATTANI-LORENTE, M. et al. Low temperature degradation of a Y-TZP dental ceramic. **ActaBiomaterialia**. v. 7, p. 858-865, 2011.

(8) SARKAR, D. et al. Nanostructured Al₂O₃-ZrO₂ composite synthesized by sol-gel technique: powder processing and microstructure. Journal of Materials Science. v. 42, p. 1847-1855, 2007.

(9) CHAWLA, K. K. **Ceramic Matrix Composites.**London: Chapman & Hall, 1993, 423p.

(10) OJAIMI, C. L.; CHINELATTO, A. S. A.; CHINELATTO, A. L.; PALLONE, E. M. J. A. Evolução microestrutural de nanocompósitos alumina-zirconia. In: 56° CONGRESSO BRASILEIRO DE CERÂMICA, Curitiba, PR, 2012. Anais... São Paulo, ABC, 2012, p. 2676-2687. Ref. 18-007.

(11) TORAYA, H.; YOSHIMURA, M.; SOMIYA, S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO₂ system by X-ray diffraction. **Journal of the American Ceramic Society**. v.67, n.6, p. C-119 – C-121, 1984.

(12) REYES-ROJAS, A.; et al. X-ray diffraction and atomic force microscopy study in aged zirconia-toughened alumina composite with dispersion of m-ZrO₂ nanoparticles. International Journal of Refractory Metals and Hard Materials. v. 35, p. 270-278, 2012.

(13) LUGHI, V.; SERGO, V. Low temperature degradation-aging-of zirconia: A critical review of the relevant aspects in dentistry. **Dental Materials.** v.26. n.8. p. 807- 820, 2010.

(14) REYES-ROJAS, A.; et al. X-ray diffraction and atomic force microscopy study in aged zirconia-toughened alumina composite with dispersion of m-ZrO₂ nanoparticles. **International Journal of Refractory Metals and Hard Materials.** v. 35, p. 270-278, 2012.

(15) PEZZOTTI, G.; et al. Strengthening contribution arinsing from residual stresses in Al_2O_3/ZrO_2 composites: a piezo-spectroscopy investigation. Journal of the European Ceramic Society. v. 19. p.247-253, 1999.

(16) TANG, D. et al. Evaluation of mechanical reliability of zircônia-toughened alumina composites for dental implants. **Ceramics International**. v.38, p. 2429-2436, 2012.

(17) GUO, X. On the degration of zirconia ceramics during low-temperature annealing in water vapor. **Journal of Physics and Chemistry of Solids.** V. 60, p. 539-546, 1999.

STUDY OF DEGRADATION HYDROTHERMAL NANOCOMPOSITES OFAI₂O₃-15 vol%. ZrO₂

ABSTRACT

The stabilized zirconia is susceptible the hydrothermal degradation at low temperature. This phenomenon occurs to transformation of tetragonal to monoclinic phase in the presence of water or fluid, so slowly and gradually, may cause part fracture. In the area of biomaterials, depending on the application of zirconia, the effect of deterioration becomes critical. So as zirconia and alumina ceramics are the most widely used as biomaterials, the aim of this work was study the effect of hydrothermal degradation of nanocomposites of alumina - 15 % vol. zirconia nanometric. For this the samples were produced by isostatic pressing and were sintered at different sintering conditions. The test of accelerated aging in an autoclave was performed to assess the stability of the material and it was done by 5 and 10 hours and the characterization performed by X-ray diffraction and atomic force microscopy showed that the nanocomposites exhibit resistance to hydrothermal degradation.

Keywords: Nanocomposite, alumina, zirconia, hydrothermal degradation.