VIDROS COM EFEITO PERCOLATIVO: POSSÍVEL MODELO COMPOSICIONAL

 A.C. Silva^{1,2}, L.F.G. Setz³, S.C. Santos², F.J.C. Braga², S.R.H. Mello-Castanho²
 ¹ Consulmat Produtos Técnicos, Indústria e Comércio Ltda. ²Instituto de Pesquisas Energéticas e Nucleares (IPEN) ³Universidade Federal do ABC.
 Av. Prof. Lineu Prestes, 2242, São Paulo; SP, Brasil. E-mail: <u>dasilva.ac@uol.com.br</u>

RESUMO:

Vidros biocidas e biovidros são materiais funcionais que apresentam efeito percolativo de cátions R^{2+} , o qual ocorre devido a dois fatores principais: I) formação de canais de percolação, dependente do teor de R^+ na composição; e, II) presença de cátions R^{2+} fracamente ligados à rede vítrea devido à competição por equilíbrio de cargas, causada pela presença de um formador secundário. Ambos são controlados pela distribuição composicional dos óxidos no vidro. O presente estudo propõe um modelo de teor composicional para cada óxido em sistemas vítreos com o efeito percolativo do R^{2+} . Ainda exploratório sobre o tema, o mesmo, limitou-se ao estudo do sistema soda-cal modificado; biocidas com B_2O_3 e biovidro 45S5 (P_2O_5). Foram realizados ensaios de dissolução (resistência hidrolítica) e de caracterização dos materiais (NMR-MAS, DRX e FT-IR). Verificou-se que o efeito percolativo do Ca²⁺ em função da distribuição composicional entre óxidos ocorreu de acordo com o modelo proposto.

Palavras chaves: Vidros percolativos; Biovidro; Biocidas; Difusão de CaO.

1.INTRODUÇÃO

Vidros silicato soda-cal, que permitam a difusão do cátion alcalino terroso (Ca²⁺) com o meio, tem adquirido interesse tecnológico ^(1,2), como por exemplo os casos do vidro biocida de baixo impacto ambiental (Green Biocide) ^(1,2) e do biovidro 45S5 ⁽³⁾. Em ambos a difusão do cálcio representa a etapa fundamental, a partir da qual se desenvolve o processo de interesse ^(1,2,4), i.e, a toxidade celular ou a formação de tecido ósseo, respectivamente. Estes processos são resultado da facilidade com que bem conhecidos fenômenos de transporte e troca iônica ^(5,6) ocorrem quando tais vidros são postos em contato com meios aquosos, com

destaque para a troca entre cátions alcalinos e alcalinos terrosos por cátions H⁺ do meio. Para que nestes fenômenos o transporte do cálcio seja facilitado, duas condições são propostas: 1) A formação de canais de percolação desde a superfície em direção ao interior do vidro; e, 2) A presença na rede vítrea de cátions R²⁺, associados de forma instável e, portanto suscetíveis a trocas com os cátions H⁺. Ambas as condições são dependentes da distribuição da estrutura do vidro e esta, naturalmente, é consequência da composição.

No modelo de Zachariasen ⁽⁷⁾ foi proposto que os tetraedros de SiO₂ associamse em arranjos de ordem periódica de curto alcance por meio do compartilhamento dos oxigênios em suas arestas (oxigênios ponte – **BO**), formando uma rede aleatória e contínua. Tal modelo permite classificar os tetraedros de SiO₂, o conforme em unidades Q^n de acordo com o número de **BO**'s (onde $4 \le n \le 0$). Isto significa que nem todos os quatro oxigênios de um tetraedro estarão compartilhados com outros tetraedros (a associação de um tetraedro com quatro outros somente ocorre nas unidades Q⁴). A ocorrência de oxigênios ligados a um único átomo de silício (oxigênios não ponte - NBO) é consequência da presença de outros óxidos diferentes da sílica no vidro, i.e, óxidos modificadores (como por exemplo óxidos de metais alcalinos e/ou alcalinos terrosos) ou por formadores secundários de rede (por ex. B₂O₅ ou P₂O₅). Portanto nestas condições a rede vítrea é composta por arranjos entre unidades Q^4 , Q^3 , Q^2 e Q^1 (unidades Q^0 associam-se de forma indireta a rede). Estes arranjos definem a organização da rede vítrea, assim por exemplo, nos vidros tipo soda-cal, as unidades Q^n típicas são as Q^3 e Q^2 (complementadas pelas demais), onde as unidades Q³ tendem a formar "superfícies" (as quais diferem de planos cristalinos) e as unidades Q^2 tendem a formar cadeias. Contudo ao se distribuírem desta maneira, cada NBO presente no tetraedro de sílica representa o ponto de interação entre a rede e os modificadores e formadores secundários que em conjunto estabilizam a rede tanto através da união de segmentos de sílica como pela compensação de cargas ⁽⁸⁾. Portanto, as unidades Qⁿ descrevem não apenas a rede vítrea, mas também a distribuição das NBO's e de forma indireta as sub-redes de metais alcalinos (R⁺). Dada a associação por ligações iônicas entre os metais alcalinos e as **NBO**'s, estes podem migrar facilmente pelas sub-redes ⁽⁸⁾.

Um dos principais iniciadores da dissolução em vidros é a difusão de cátions H⁺ desde a superfície para o interior do material, levando à subsequente troca do cátion R⁺ (Na⁺) pelo cátion do hidrogênio difundido ^(5,6,9). As sub-redes alcalinas, são

1777

portanto as precursoras dos canais de percolação por onde são possíveis as trocas de cátions desde a estrutura dos vidros até o meio onde este esteja inserido. Logo, com o aumento da concentração de alcalinos, a troca iônica será facilitada, até o momento em que a rede vítrea se torne "despolimerizada" de tal forma que a resistência química seja comprometida e a composição de vidro não seja mais viável no aspecto de emprego funcional. Gedeon *et al* ⁽⁸⁾, estudou a formação de canais de percolação em sistemas binários Na₂O:SiO₂, demonstrando que neste sistema, a proporção molar ótima para a formação de canais de percolação ocorre entre 30 e 40%. Extrapolando o trabalho de Gedeon *et al*.⁽⁸⁾, para vidros soda-cal, temos na Eq. A, uma proposta de proporção molar para a ocorrência de canais de percolação, onde **x**, **y** e **z** representam as proporções relativas do oxido; e, $0,\le z \le 0,4$ indica a proporção ótima para a formação destes canais.

$[(Ca0)_y : (SiO_2)_x]_{1-z} : (Na_2O)_z$ (A)

Por outro lado, em um vidro silicato, os cátions de óxidos alcalinos terrosos (\mathbb{R}^{2+}), tais como o CaO, por serem bivalentes, ligam-se a dois **NBO**'s simultaneamente, cada qual de um tetraedro diferente. Uma vez que numa rede vítrea os tetraedros de SiO₂ não compartilham arestas ⁽⁷⁾, este \mathbb{R}^{2+} estará unindo duas unidades \mathbb{Q}^n , onde **0**≤**n**<**4** , e por consequência unindo dois segmentos da rede vítrea. Esta união permite a coerência estrutural formada por segmentos de redes de sílica. Esta "ponte" formada entre tetraedros pelo \mathbb{R}^{2+} , tenderá a ser tanto mais estável quanto mais forem energeticamente equivalentes as duas ligações formadas pelo cátion⁽⁵⁾. Em geral ocorrem diferenças de energia entre estas ligações, pois os tetraedros de SiO₂ a que os oxigênios estão associados pode pertencer a segmentos de unidades \mathbb{Q}^n com as mais variadas combinações como outros óxidos. Uma possibilidade para a maioria dos casos consiste em que estas diferenças de energia, sejam dispersas ao longo dos segmentos de sílica, com o auxilio da associação com os \mathbb{R}^+ .

Um formador secundário (R₂O_n - B₂O₃ ou P₂O₅, por exemplo) quando presente no vidro irá competir com a sílica pela formação da rede. A preferência pela forma de posicionamento na rede vítrea será determinada pelas energias de ligação e pelas concentrações relativas. Para pequenas concentrações, a substituição da

1778

sílica como elemento formador por um R₂O_n, fica prejudicada e estes óxidos tendem em geral a assumir coordenações diferentes da tetraédrica, como por exemplo, a trigonal. Neste caso, o óxido formador secundário (R₂O_n) exerce um papel similar ao dos íons modificadores R²⁺, e compete com estes pelas NBO's. Numa rede vítrea nestas condições, a dispersão de diferenças de carga encontrará barreiras, possivelmente resultando em cátions R²⁺ com amplo deseguilíbrio na energia de cada uma de suas duas ligações e portanto, instável em sua posição na estrutura vítrea, sendo assim suscetível ao ataque de íons H⁺ e transporte para a superfície do vidro através dos canais de percolação. A instabilidade do CaO (R²⁺) será tanto maior quanto a concentração relativa de R₂O_n na estrutura vítrea. Desta forma, é razoável assumir que todo o R²⁺ será instável em proporções molares correspondentes a $(R_2O_n) \ge (R^{2+})$, adquirindo estabilidade proporcional ao aumento de sua concentração relativa, ou seja; $(R_2O_n) < (R^{2+})$. Como altas taxas de difusão do cálcio podem levar à degradação do material em curto prazo, o controle da mesma é de interesse para a finalidade desejada. Finalmente, em um vidro silicato, a concentração de grupos R²⁺ deve ficar limitada à metade da concentração de formadores (SiO₂)⁽⁵⁾, de modo a se manter a coerência da rede vítrea e demais características associadas a esta. Como para este caso particular foi assumido que o formador secundário atua como modificador, a mesma relação se torna válida para o conjunto da soma do R^{2+} com o R_2O_n .

Agrupando as relações entre grupos funcionais expostas, temos a seguinte relação composicional (Eq. B):

$$\{[(Ca0)_y : (R_2O_n)_{1-y}]_x : (SiO_2)_{3-x}\}_{1-z} : (Na_2O)_z$$
 (Eq.B)

Nesta relação, **0,5<y≤1** representa a difusão controlada do cálcio; **0≤x≤1** a coerência da rede de SiO₂; e, **0,3≤z≤0,4** a melhor taxa de formação de canais de percolação. A relação composicional acima (Eq. B) é representada no diagrama quartenário de composições CaO:Na₂O: R_2O_n : SiO₂ (Fig. 1a). No mesmo temos o corte que atravessa a região aproximada onde se propõe a ocorrência do efeito percolativo do cálcio (Fig. 1b).

O presente estudo compara o modelo composicional proposto com vidros de comprovada atividade percolativa do cálcio.

2.MATERIAIS E MÉTODOS

Foram utilizadas formulações de vidros soda-cal modificados com B_2O_3 (vidros biocidas; T10C, T15C e T20C) ⁽¹⁾, e de vidro soda-cal modificados com P_2O_5 (Biovidro 45S5 de Hence) ⁽³⁾ as composições são mostradas na tabela 1.

	Composições de vidros			
Óxido	45\$5	T10C	T15C	T20C
SiO ₂	47,64	55,48	49,78	45,40
CaO	26,74	11,10	16,69	22,25
Na ₂ O	22,92	28,87	27,83	25,76
P_2O_5	2,71	-	-	-
B ₂ O ₃	-	4,55	5,70	6,59

Tabela 1 - Composições dos vidros formulados (% em moles).

Os reagentes utilizados foram: Quartzo 99,0%; Na₂CO₃ - Nuclear, 95,0 % em massa; NaOH - Nuclear, 97,0 % em massa); CaO - Nuclear, 95,0 % em massa; H₂BO₃ - Química Moderna, 97,0% em massa; e, P₂O₅ Vetec, 97,0% em massa.As fusões foram realizadas a 1500°C por duas horas em cadinhos de alta alumina em

forno vertical. Os vidros foram moldados em barras (10x10x50mm) e recozidos 500°C for 2h. A caracterização dos mesmos foi realizada utilizando as técnicas de DRX (Bruker AXS D8-Advance), RNM-MAS (Bruker – Advance 400 – 9.4 Tesla, Kaelsruhe); ICP (Perkin Elmer optical emission spectrometer - Optima 2100 DV) e FT-IR (Thermo Nicolet - Nexus 870 FT-IR). A resistência química foi avaliada pelo método de resistência hidrolítica descrito por Day ⁽¹⁰⁾. Os ensaios de atividade biocida foram avaliados em culturas de E. coli, M. luteus e C. krusei, em meio liquido de cultura Luria Bertani (LB), por 48hs à 37°C ⁽¹⁾ em contato com os vidros pulverizados (< 32 µm; d₅₀ = $6.63\pm1\mu$ m). A eficácia dos agentes biocidas foi caracterizada pela diferença da população de células viáveis (CFU_mL_1) após 24 h (log A) e a população após 48 h de cultura (log B).

3.RESULTADOS E DISCUSSÃO

Os espectros MAS-NMR²⁹Si e ¹¹B dos vidros T10 e T20, são mostrados na fig. 2.

Figura 2 – Espectros MAS-NMR dos vidros T10 e T20, para ²⁹Si (a) e ¹¹B (b)

Nestes espectros a componente principal MAS-NMR ²⁹Si detectada em ambos os vidros em torno de -86,5 ppm (Fig. 2-a) caracteriza a estrutura vítrea formada por unidades Q² e portanto organizada principalmente em "cadeias" de tetraedros de sílica. Tal arranjo facilita a distribuição dos cátions Na⁺ na forma conveniente para a formação dos canais de percolação. Em ambos os vidros a componente principal MAS-NMR ¹¹B foi detectada em torno de 0,1 ppm (Fig. 2-b) e indica o óxido de boro em coordenação tetraédrica. Contudo uma componente secundária a 17,0 ppm indicativa do óxido de boro em configuração trigonal pode ser claramente observada com o aumento do teor de CaO na composição (vidro T20). Tal resultado sugere a

interferência na acomodação do óxido de boro na rede vítrea, com o aumento da concentração de CaO.

Na Fig.3 são mostradas as curvas de variação da taxa de dissolução superficial para todos os vidros durante o ataque hidrolítico.

Figura 3 – Curvas de dissolução obtidas após de ataque hidrolítico

Foram observados dois grupos com comportamentos específicos. O primeiro deles (vidros T10 e T15) apresentaram taxas de dissolução inicial acima de 10⁻⁶ g/(cm².s) e no outro grupo (vidros T20 e 45S5) esta é abaixo de 4,5x10⁻⁷ g/(cm².s). Para ambos os grupos, há indicação que o processo é de um comportamento inicial de dissolução e posterior alteração deste. A transição entre ambos aparenta ocorrer entre 72 e 244 horas de ensaio. Tal comportamento esta de acordo com a literatura ^(5,9), podendo ser atribuída na fase inicial á difusão do H⁺ e consequente remoção (troca) do Na⁺. A posterior mudança do comportamento da taxa de dissolução, principalmente observada nos vidros dos segundo grupo, poderia equivocadamente ser atribuída à formação de camadas passivadoras ricas em sílica na superfície dos mesmos ⁽⁶⁾, contudo a formação destas não foi observada em trabalhos anteriores com os mesmos vidros ⁽²⁾, indicando a existência de outro mecanismo de dissolução envolvido. Uma hipótese seria a remoção do R⁺ decaindo paulatinamente, favorecendo a remoção do R²⁺, conforme as necessidades de equilíbrio de cargas da rede vítrea durante a dissolução. O vidro T15, aparenta apresentar o comportamento intermediário entre os dois grupos.

A Fig.4 mostra os espectros obtidos por FTIR para todos os vidros, desde seu estado original (0h), como obtido, até 336 horas de ataque hidrolítico do material pulverizado, com análises intermediárias a 24, 72 e 166h de ensaio.

Figura 4 – Espectros obtidos por FTIR dos vidros a) T10; b) T15; c) T20; e, d) 45S5.
Foram analisados os materiais antes e a intervalos de tempo durante o ataque hidrolítico (0, 24, 72, 166 e 336h). Na figura são indicados os picos de FTIR de interesse, onde: 1) Si-O-B (620-670 cm⁻¹); 2) Si-O[NB],[Q⁰] (850-880 cm⁻¹); 3) Si-O[NB][Q¹] (900-920 cm⁻¹); 4) Si-O[NB],[Q²] (950 cm⁻¹); 5) Silicatos de metais (970-1080 cm⁻¹); 6) B-O Livre (1406 cm⁻¹); 7) Na-O (1470 cm⁻¹); 8) P-O Vítreo (550-560 cm⁻¹); e, 9) P=O (1080-1350 cm⁻¹)

O estudo dos picos nesta figura, indica que a rede vítrea de todos os vidros é predominantemente composta por ligações associadas à espécies Q^2 (picos indicados por 2 nas figuras). Este resultado está de acordo com o observado nos ensaios por MAS-RNM. Para todos os vidros observa-se que as unidades Q^2 , Q^1 e Q^0 presentes no vidro foram afetadas de forma significativa com o progresso do ataque hidrolítico (picos indicados por 2, 3 e 4 nas figuras), os vidros T10 e T15

mostraram-se particularmente suscetíveis a este comportamento. Coincidentemente, nos vidros T10 observam-se significativas alterações nos picos relativos às ligações Na-O e B-O livre (não diretamente associado à rede de sílica), indicados por **6** e **7** na figura, sendo estas alterações brandas em T15 e pouco perceptíveis em T20. Os picos relativos às ligações Na-O e P=O (picos 7 e 9) no vidro 45S5 (Fig. 4-d) mostram durante o ataque comportamento análogo às ligações formadas pelo sódio e o boro nos vidros T20. O pico relativo à ligação Si-O-B (indicado por **1** na figura), apresenta sua maior suscetibilidade no vidro T10, parecendo tender a estabilidade em T20, e ainda, de forma análoga observamos a mesma estabilidade para a ligação P-O vítreo (**8** na figura) no vidro 45S5. Os resultados obtidos indicam que o aumento relativo do teor de cálcio pode também inibir a mobilidade do R₂O_n, ademais de controlar a difusão do Na⁺, e por consequência a taxa pela qual são formados os canais de percolação. Este efeito pode ser resultado da concorrência do R²⁺ (Ca²⁺) com o R₂O_n pelas posições como modificador na rede vítrea, como inicialmente proposto.

Figura 5 – Atividade biocida em culturas celulares de amostras de vidro em pó após 48 horas de ensaio

A Fig. 5 mostra a redução da população de células viáveis de E.coli, M. luteus e C.Krusei após 48 de incubação em presença dos vidros T10, T15, T20 e 45S5. Podemos observar ampla atividade biocida em todos os vidros ensaiados, com exceção do vidro T10.

1784

Após o ensaio de atividade biocida o líquido sobrenadante foi analisado (Fig. 6a). Os líquidos onde foram imersos os vidros que apresentaram intensa atividade biocida apresentaram elevada concentração de Ca2+ (> a 130 ppm) como se pode observar na figura. A troca de Ca²⁺ com o meio do vidro T15 é indicada maior que a do vidro T20, contudo a atividade biocida de ambos foi similar. Certamente existem fatores inerentes à bioquímica celular envolvidos, mas é plausível também que nos vidros T10 e T15, a atividade biocida tenha sido inibida por parte do cálcio liberado não estar na forma iônica (Ca²⁺) podendo parte deste estar presente na solução na forma de fragmentos resultantes da intensa solubilidade е consequente desagregação destes vidros (Fig.3). A Fig. 6-b mostra a extrapolação destes dados para o diagrama quaternário de composição CaO:Na₂O:SiO₂:R₂On. Estes resultados estão de acordo com os anteriores e sugerem que a percolação do cálcio ocorre dentro de uma variação composicional restrita, como proposto.

Figura 6 – a) Concentração média de Ca²⁺ nos líquidos de cultura celular após 48h de ensaio. b) Diagrama quaternário de composição CaO:Na₂O: SiO₂:R₂Ox. As composições indicadas em vermelho (T15,T25 e 45S5) apresentam difusão do cálcio na região proposta pelo modelo (indicada em amarelo)

4.CONCLUSÕES

Para os vidros ensaiados, a existência de uma região no diagrama de composição CaO:Na₂O: SiO₂:R₂O_n favorável á difusão do Ca⁺, foi demonstrada de acordo com o modelo composicional proposto (Eq.B). A relação proposta por Gedeon *et al* ⁽⁸⁾, para a formação de canais de percolação (entre 30 e 40% molar de Na₂O) no sistema Na₂O:SiO₂, pôde ser extrapolada com sucesso para o sistema CaO:Na₂O:SiO₂, onde a concentração de CaO também controla a taxa de formação dos canais de percolação. O aumento relativo do teor de cálcio parece inibir a mobilidade do R₂O_n. Este efeito foi associado à concorrência do R²⁺ (Ca²⁺) com o R₂O_n pelas posições como modificador na rede vítrea, como inicialmente proposto.

5. TRABALHOS FUTUROS

Verificação experimental dos limites da região favorável à difusão do Ca^{2+} no diagrama composicional quaternário CaO:Na₂O:SiO₂:R₂O_n, utilizando os óxidos B₂O₃, P₂O₅, Al₂O₃ e outros R₂O_n.

6. AGRADECIMENTOS

Os autores agradecem à Capes, CNPq, Fapesp, ICMM-CSIC e CNB-CSIC pelo auxílio direto ou indireto na realização deste trabalho.

7. BIBLIOGRAFIA

1. MOYA, S.J. ESTEBAN-TEJEDA, L. PECHARROMAN, C. MELLO-CASTANHO, S.R.H. SILVA, A.C. MALPARTIDA, F. Glass Powders with a High Content of Calcium Oxide: A Step Towards a "Green" Universal Biocide. *Adv. Eng. Mat.*, v. 6, p.13, 2011.

2. SILVA, A. C. vidros e vitrocerâmicos com alta concentração de metais a partir de resíduos industriais . 2008. Tese (Doutorado) – IPEN, São Paulo.

3. Jones, J.R. Review of bioactive glass: From Hench to hybrids. *Acta Biomaterialia*, v.9, p.4457-4486, 2013.

4. TILOCCA, A. Models of structure, dynamics and reactivity of bioglasses: a review. J. *Mater. Chem.*, v. 20, p.6848–6858, 2010.

5. PAUL, A. Chemistry of glasses. Londres, Inglaterra.: Chapman and Hall, 1982.

6. HENCH, L.L. CLARK, D.E. Physical chemistry of glass surfaces. *J. of Non-Cryst. Solids*, v.28, p. 83-105,1978.

7. ZACHARIASEN, W.H. J. *Am. Chem. Soc.*, v. 54, p. 3841, 1932.

8. GEDEON, O. LISKA, M. MACHACEK, J. Connectivity of Q-species in binary sodium-silicate glasses, *J. of Non-Cryst. Solids*, v.354, p. 1133–1136, 2008.

9. NAVARRO, J.M.F. **El Vidrio**, 3^a ed. Madrid, Consejo Superior de Invest. Científicas – Fundación Centro Nacional del Vidrio, 2003.

10. DAY, D.E. WU, Z. RAY, C.S. HRMA, P. Chemically durable iron phosphate glass waste forms, *J. Non-Cryst. Solids*, v.241, p.1–12, 1998.

GLASS WITH PERCOLATION EFECT: POSSIBLE COMPOSITIONAL MODEL

ABSTRACT

Biocide and bioactive glasses are functional materials that exhibit percolation effect of R^{2+} cations, which are due to two main factors: I) percolation channels formation, in function of R⁺ content; and, II) weakly bonded R²⁺ cations due network charge balancing competition because a secondary former presence. Both are controlled by the oxides compositional distribution in the glass. This study proposes a compositional oxide model for R²⁺ percolation effect in glassy systems. Further exploration on the topic, it is limited to the study of the modified soda-lime system; biocides with B₂O₃ and Bioglass® 45S5 (P₂O₅). Dissolution testing (hydrolytic resistance) and material characterization (MAS-NMR, XRD and FT-IR) were performed. It was found that the percolation effect of Ca²⁺ on the basis of compositional distribution occurred in according to the proposed model. **Key words:** Percolative glasses; Bioglass; Biocides; CaO diffusion.