APROVEITAMENTO DE RESÍDUO DA ETAPA DE LAPIDAÇÃO DE VIDRO EM CERÂMICA VERMELHA

Licurgo, J. S. C.*; Vieira, C. M. F.

Universidade Estadual do Norte Fluminense – UENF

Laboratório de Materiais Avançados-LAMAV

Av. Alberto Lamego, n° 2000, Horto. Campos dos Goytacazes – RJ

CEP: 28015-620

*julianasclicurgo@gmail.com

RESUMO

Este trabalho tem por objetivo avaliar o efeito da incorporação de até 40% em peso de um resíduo gerado na forma de lama proveniente da etapa de lapidação da fabricação de vidros, em cerâmica vermelha. Corpos-de-prova foram obtidos por prensagem uniaxial a 20 MPa e queimados na temperatura de 900°C. As propriedades físicas a mecânicas avaliadas foram: retração linear, absorção de água e tensão de ruptura à flexão. Os resultados indicaram que o resíduo altera as propriedades da cerâmica vermelha com redução da absorção de água na temperatura investigada e aumento da resistência mecânica.

Palavras-Chave: cerâmica vermelha, vidro, resíduo.

INTRODUÇÃO

Nos últimos anos a reciclagem e o reaproveitamento de resíduos se tornaram uma preocupação mundial. A destinação final de resíduos tem sido

um grande problema para as indústrias, o mal descarte do mesmo pode causar graves problemas ao meio ambiente. O processo de reciclagem de resíduos deve ser adequadamente gerenciado, pois ele pode acarretar impactos ambientais.

O vidro é um material que apresenta grande quantidade de óxido de silício, o objetivo da reciclagem de vidro é diminuir a quantidade desses resíduos no meio-ambiente.

Quando o resíduo de vidro é incorporado em misturas cerâmicas apresenta um bom potencial como novo fundente. O pó de vidro também acelera o processo de densificação durante a queima, porém ele não é a opção mais indicada para a substituição total do feldspato, pois pode gerar um produto não-conforme. Contudo sua substituição parcial pode proporcionar contribuição econômica e ecológica. Outra vantagem na reutilização do pó de vidro no processo produtivo é a diminuição da energia necessária para sua fundição.

Visto que o pó de vidro não pode ser reciclado e que sua eliminação em aterros e rios pode causar um grande problema ambiental, esse trabalho tem como objetivo encontrar uma aplicação útil e ambientalmente viável para ele, que é resultado do processo de lapidação de vidro. Será avaliada a influência da incorporação do pó de vidro nas propriedades físico-mecânicas de uma massa argilosa utilizada na produção de cerâmica vermelha.

MATERIAIS E MÉTODOS

Foram utilizados os seguintes materiais para realização desse trabalho: argila e resíduo de vidro, gerado na forma de lama proveniente da etapa de lapidação da fabricação de vidros.

Inicialmente a argila foi beneficiada por peneiramento em 35 mesh. O resíduo de vidro foi destorroado e peneirado em 35 mesh.

Foram elaboradas seis composições com incorporação do resíduo em massa argilosa nos seguintes percentuais: 0; 5; 10; 20; 30 e 40% em peso (a massa 0%, sem adição de resíduo é utilizada como referência). As composições foram homogeneizadas em um moinho durante 20 minutos. Em seguida, as massas foram umidificadas com 8% em peso de água.

Foram preparados por prensagem uniaxial a 20 MPa corpos de prova retangulares com 115 mm. Na estufa a 110°C foi realizada a secagem durante 24 horas. Os corpos de prova foram queimados em forno de laboratório tipo mufla na temperatura de 900°C. A taxa de aquecimento utilizada foi de 2°C/min e isoterma de 180 minutos na temperatura de patamar. Realizou-se o resfriamento com a mesma taxa de aquecimento. Foram determinadas as seguintes propriedades físicas e mecânicas: absorção de água, retração linear e tensão de ruptura à flexão.

O resíduo foi caracterizado através de granulometria, Fluorescência de Raios-X (FRX) e Difração de Raios-X (DRX).

RESULTADOS E DISCUSSÃO

Conforme apresentado na tabela 1, foram identificadas as composições químicas em porcentagem (%) de óxidos presentes no pó de vidro proveniente do resíduo da lapidação de vidro, através da análise de Fluorescência de raios-X.

Tabela 1: Composição química do pó de vidro (óxidos, %) obtida por fluorescência de raios-X

Óxidos	Percentual (%)
SiO2	67,88
TiO2	0,17
Al2O3	2,31
Fe2O3t	1,25
MgO	2,44
CaO	8,44
Na2O	13,57
K2O	0,30
P2O5	0,05
SO3	0,25
Cr2O3	0,09
NiO	0,11
CuO	0,03

ZrO2	0,10
LOI	2,80
Total	99,79

Observa-se que o pó de vidro apresenta predominantemente óxido de silício (SiO₂) que é responsável por formar a rede vítrea. Os óxidos dos metais alcalinos e metais alcalinos terrosos (óxido de sódio, cálcio e potássio) funcionam como modificadores de rede e são responsáveis por romper a estrutura vítrea, ou seja, diminuem a viscosidade do vidro. O óxido de cálcio (CaO) e óxido de sódio (Na₂O) são responsáveis por proporcionar estabilidade ao vidro contra ataques de agentes atmosféricos e também atuam no processo de sinterização, diminuindo a temperatura de queima das cerâmicas. Os óxidos de alumínio (Al₂O₃), de Zircônio (ZrO₂) e magnésio (MgO) aumentam a resistência mecânica do vidro, além disso o óxido de magnésio (MgO) também garante mais resistência ao vidro para suportar mudanças bruscas de temperatura.

A Figura 2 apresenta a absorção de água das massas cerâmicas queimadas a 900°C, em função do teor de resíduo de vidro proveniente da lapidação de vidro. Pode-se observar que à medida que o teor de pó de vidro aumenta, os valores de absorção diminuem.

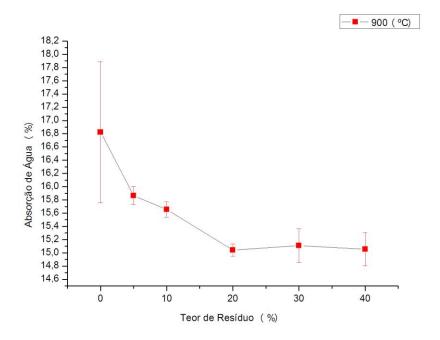


Figura 2: Absorção de água em função do teor de resíduo de vidro incorporado

A incorporação de 5 e 10% de resíduo não apresentou grande influência nas propriedades investigadas. Com 20, 30 e 40% de resíduo incorporado nota-se mais claramente o efeito na redução da porosidade aberta sobre a massa argilosa.

A Figura 3 apresenta a retração linear de queima das cerâmicas queimadas.

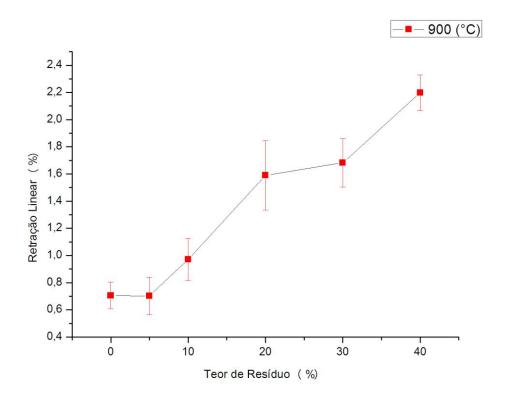
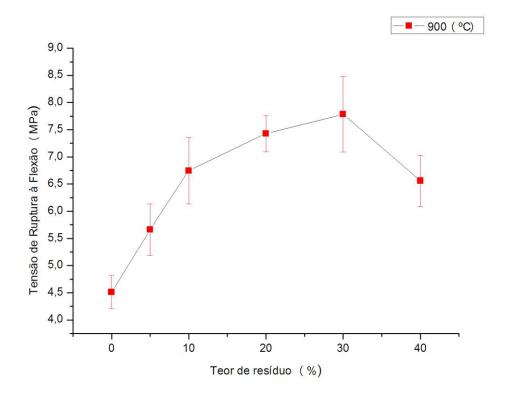


Figura 3: Retração linear em função do teor de resíduo incorporado


Além da sinterização, no aquecimento, ocorrem decomposição e transformações de fases. Na sinterização os poros do corpo prensado tendem a fechar, seguido por retração linear. As demais reações sobre as dimensões da estrutura interferem na extensão desta retração. A sinterização tende a diminuir a área superficial do corpo, incluindo a diminuição dos poros. As medidas de retração linear e de absorção de água estão diretamente relacionadas e ambas dependem da sinterização.

Observa-se uma variação significante da retração linear da argila com a incorporação do resíduo de vidro proveniente da lapidação de vidro. As

formulações com 5 e 10% de resíduo não apresentam alterações significativas na retração linear das amostras quando comparadas à amostra de referência. Para as formulações de 20, 30 e 40% pode-se observar um bom incremento nos valores médios de retração.

Pode-se observar através da Figura 4 que à medida que a tensão de ruptura à flexão aumenta a absorção de água diminui.

Observa-se uma pequena variação da resistência mecânica a argila com a incorporação do resíduo de vidro proveniente da etapa de lapidação de vidro.

Figura 4: Tensão de ruptura a flexão em função do teor de resíduo de vidro incorporado

A resistência mecânica da argila apresenta melhora com a incorporação do resíduo, provavelmente isso ocorre devido ao efeito do resíduo que, quando passa a se comportar como líquido, seu efeito quando adicionado a uma cerâmica vermelha pode proporcionar melhorias na propriedade mecânica através do fechamento dos poros. As composições com mais de 10% de resíduo de vidro incorporado geram maiores benefícios para a qualidade da cerâmica, sendo assim indicadas como as mais adequadas.

CONCLUSÕES

O resíduo de vidro proveniente da etapa de lapidação de vidro investigado é constituído predominantemente de sílica (SiO₂), seguido pelo óxidos de sódio (Na₂O) e cálcio (CaO), no processo de sinterização esses óxidos diminuem a temperatura de queima das cerâmicas. Esse resíduo apresenta grande potencial de uso na cerâmica vermelha, principalmente por reduzir a absorção de água.

Foi observado que na temperatura de 900°C a adição do resíduo, em todas as composições, diminuiu a absorção de água, aumentou a retração de queima e a resistência à ruptura por flexão, quando comparado a uma massa sem adição de resíduo de vidro preparada e queimada sob as mesmas condições. Incorporações com 30% de resíduo de vidro apresentam uma melhor combinação de resultados proporcionando redução da absorção de água, aumento da resistência à ruptura por flexão e da retração linear, ou seja, promove uma melhora significativa da resistência mecânica da cerâmica.

Conclui-se então que o resíduo de vidro apresenta grande potencial para ser reaproveitado em cerâmica vermelha, pois apresenta grande quantidade de óxido de silício. Além de ser uma alternativa que representa economia e contribuição para preservação ambiental, já que o resíduo poderia ser lançado na natureza por ser um subproduto não reciclável.

AGRADECIMENTOS

Os autores gostariam de agradecer a FAPERJ (proc. n. E-26/103.023/2008), ao CNPq (proc. N. 306027/2008-9) e a Empresa Viminas pela concessão do resíduo.

REFERÊNCIA BIBLIOGRÁFICA

- 1. CALLISTER W. D. Ciência e Engenharia dos Materiais, uma introdução. 7 ed. Ed LTC. 2008.
- 2. MORAIS A. S. C. Incorporação de Resíduo de Vidro de Lâmpada Fluorescente em Cerâmica Vermelha. Dissertação (Doutorado em Engenharia e Ciência de Materiais). Universidade Estadual do Norte Fluminense. 2013.
- 3. GALVÃO A. C. P. Viabilização de Rejeitos de Vidro para Produção de Tijolos Cerâmicos. Holos, Ano 29, Vol.4.
- 4. ANTÔNIO A. P. Caracterização de Resíduo de Estação de Tratamento de Efluentes de Processo de Lapidação de Vidro sodo-cálcico e sua Aplicação na Produção de Concretos. 56º Congresso Brasileiro de Cerâmica. Curitiba, PR. Junho, 2012.
- 5. PONTIKES Y. Thermal behaviour of clays for traditional ceramics with soda-lime-silica waste glass admixture. June, 2006.
- 6. GODINHO K. O.; RABELO, T. R.; HOLANDA J. N. F.; SILVA A. G. P. Incorporação de resíduo de vidro em cerâmica vermelha. Anais do 48º Congresso Brasileiro de Cerâmica (CNC). Curitiba, PR, 2004b.

UTILIZATION OF WASTE ORIGINATING FROM GLASS STONING INTO CLAY CERAMICS

ABSTRACT

The present study aims to evaluate the effect of incorporation of waste generated as sludge originating from manufacturing glass, up to 40 wt.%, in the clay ceramics. Specimens have been obtained at 20 MPa by uniaxial pressing and fired at 900 °C. The physical mechanical properties: linear shrinkage, water absorption and flexural strength have been evaluated in this present study. The results have indicated alterations in the ceramic's properties, as a reduced water absorption in the assayed temperatures and an increased mechanical strength.

Key-words: clay ceramics, glass, waste.