Análise da Interação entre Partículas de Alumina e Fluidos Complexos Tipo Blendas Biocombustíveis/Diesel Através de Ensaios de Condutividade Térmica e Medidas Espectroscopia no Infravermelho

G.O. Martins ^{a,*}, F L. Seribeli ^a, M. A. L. Nobre ^a
^a Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF/DFQB
Universidade Estadual Paulista – UNESP/FCT
R. Roberto Simonsen 305, C.P. 467, CEP: 19060-900,Presidente Prudente – SP
*grazi.martins2@gmail.com

RESUMO

A alumina Al_2O_3 foi utilizada como um marcador inorgânico em um fluido funcional à base de diesel, biodiesel e etanol anidro, sendo a mesma adicionada nas seguintes concentrações: 0, 30, 45, 60, 75, 90 e 120 ppm. Estas frações foram adicionadas à blenda do sistema ternário com a seguinte composição 50% de diesel (D), 40% de Biodiesel (B) e 10% de etanol (E), $D_{50}B_{40}E_{10}$. Cada uma das blendas combustíveis foi caracterizada pela técnica de espectroscopia de infravermelho na região de 4000-400 cm⁻¹, infravermelho intermediário. A posição de banda e largura média a meia altura associada ao grupo -OH do etanol anidro também depende da fração de Al_2O_3 adicionada. A condutividade térmica do fluido tipo blenda mostrou-se dependente das frações de alumina adicionada. Os resultados são discutidos baseados na interação entre a superfície do Al_2O_3 e grupos hidroxilas do etanol anidro.

Palavras-chave: Blendas biocombustíveis, marcadores inorgânicos, diesel.

INTRODUÇÃO

Misturas combustíveis de origem renovável à base de etanol e biodiesel vêm viabilizando métodos alternativos para geração de flexibilidade na matriz energética com relação à sua aplicação em motores ciclo diesel. O biodiesel e suas várias misturas já mostraram capazes para tal aplicação. Alguns estudos abordam a efeitos da incorporação de partículas nano ou sub-micrométrica, denominados neste

trabalho como marcadores inorgânicos, em blendas combustíveis com a finalidade de melhorar a redução na emissão de gases poluentes e materiais particulados quando comparados ao uso predominante do biodiesel nos motores diesel ^(1,2,3).

Neste trabalho, a blenda ternária estudada apresenta em sua composição 50, 40 e 10% de diesel, biodiesel e etanol, respectivamente; E também, tal blenda ternária, D₅₀B₄₀E₁₀, a partir da adição de alumina, Al₂O₃, nas seguintes concentrações: 0, 30, 45, 60, 75, 90 e 120 ppm. Sendo, o comportamento e interação dos compostos de blenda, em especial, a Al₂O₃, avaliados a partir de ensaios de análise das propriedades térmicas, condutividade e resistividade, e espectroscopia vibracional na região do infravermelho intermediário.

Nos testes de condutividade térmica, avalia-se a influencia da concentração das nano partículas de aluminas pelo monitoramento da variação da condutividade térmica registradas em diferentes temperaturas. Com isso, é possível analisar os materiais que dissipam calor com maior facilidade ⁽⁴⁾.

A caracterização estrutural das blendas biocombustíveis realizada por FTIR-MID permite identificar as interações moleculares entre os componentes de blendas ⁽⁵⁾. Picos de banda na região de 1500-800 cm⁻¹, os quais definem as características exclusivas do biodiesel como sendo sua impressão digital são avaliados ^(6,7). E também, a variação da área da banda relacionada à hidroxila, -OH, ao incorporar o marcador inorgânico de alumínio na mistura – como explica, *Dharmalingam, et al.* ao associar a interação entre a hidroxila do álcool e a carbonila do éster por hibridização ⁽⁸⁾.

Trabalhos já relataram a melhoria das características combustíveis pela adição deste marcador inorgânico. Como por exemplo, a melhoria do tempo de ignição em motor à diesel ⁽¹⁾ e a avaliação do comportamento da condutividade térmica em misturas ternárias com aditivos comerciais para radiadores modificados ⁽⁹⁾.

MATERIAIS E MÉTODOS

<u>Materiais</u>

Os regentes, biodiesel e diesel, utilizados neste estudo foram doados pelas empresas Small e distribuidora Petrobras, respectivamente. O álcool etílico absoluto, mínimo 99,5GL, adquirido da empresa Cinética e, a alumina comercial, A1000, como aditivo, pela empresa Alcoa.

A caracterização dos compostos puros foi realizada por FTIR (Fig. 1), assim como, medidas de análise térmica, condutividade/resistividade à 20°C, Tabela I.

Figura 1. Espectros de infravermelho (a) do etanol, biodiesel e diesel, (b) alumina, AI_2O_3 .

Compostos	K (W/m.k)	R (°C.cm/W)		
Glicerina*	0,280	354,6		
Etanol	0,183	547,5		
Biodiesel	0,151	663,6		
Diesel	0,122	818,6		

Tabela I. Condutividade e resistividade térmica dos componentes de blenda.

* Padrão de medidas de condutividade, literatura ⁽¹⁰⁾ indica 0,28 W/m.k.

<u>Métodos</u>

Preparação das blendas ternárias

As misturas ternárias foram preparadas utilizando-se uma pipeta graduada sorológica, sendo o volume total da amostra de 10 ml. Um diagrama de fase ternário foi construído para identificar o campo de miscibilidade considerando 36 misturas combustíveis contendo biodiesel, diesel e etanol; sendo que algumas, em tempo adequado de estabilização, continuaram miscíveis e outras perderam seu aspecto

homogêneo proporcionando trabalhar com específicas blendas individualmente, como por exemplo, a $B_{40}D_{50}E_{10}$ que será discutida, a qual compõe de 40, 50 e 10 mL de biodiesel, diesel e álcool etílico, respectivamente. A adição de alumina deu-se através da densidade experimental calculada da blenda ternária obtida. A dispersão e homogeneização da AI_2O_3 foram realizadas em banho ultrassônico ⁽¹¹⁾.

Definição do tamanho da partículas de alumina

A estrutura do Al_2O_3 foi caracterizada por difratometria de raios X, Ficha JCPDS 46-1212 de simetria R3c (167), sendo o tamanho médio do cristalito calculado através da equação de Williansom-Hall ⁽¹²⁾ igual a 25 nm. Foram utilizados, os seguintes planos cristalográficos (hkl): (012), (104), (110), (113), (024), (116), (214), (300). De acordo com a Figura 2, podemos observar a formação da fase cristalina estável α -Al2O3).

Figura 2. Difratograma de raios-X dos pós de α-Al2O3

Espectro FTIR

No presente estudo uma célula para materiais líquidos com intervalo de análise entre 4000-500 cm⁻¹, resolução de 2 cm⁻¹ à 100 varreduras foi utilizada. Nos espectros em análise, os picos entre 4000-1500 cm⁻¹ são importantes para determinação dos grupos funcionais: hidroxila e carbonila presente nos grupos

funcionais dos álcoois e ésteres, respectivamente ⁽¹³⁾. A banda vibracional associada ao grupo -OH do álcool será utilizado como sonda dos ´processos de interação molecular entre componentes de blenda e superfície da partícula confirme a diminuição de sua área e largura-meia altura.

Condutividade térmica

As medidas de condutividade e resistividade térmica foram realizadas por meio de um analisador de condutividade térmica *KD2 PRO* DECAGON, com precisão de \pm 0.01 W/mK. O método de medida baseia-se no método do fio quente, na qual os valores de k (condutividade térmica) são obtidos através da Eq. A ⁽¹⁴⁾.

$$k = \frac{q}{4\pi m} \tag{A}$$

onde, k (W/mK) representa a condutividade, q (W) representa a quantidade de calor produzida por unidade de tempo, e m representa o coeficiente linear de inclinação da reta, sendo que o equipamento segue às normas internacionais EN55022: 1987 e EN500082-1: 1991.

RESULTADOS E DISCUSSÃO

Nos espectros de FTIR das blendas ternárias (Fig. 3 e 4), os picos característicos à grupos metila do diesel, relacionados à deformação angular assimétrica e simétrica fixam a posição 1455 e 1375 cm⁻¹ respectivamente e, picos vinculados a deformação axial assimétrica e simétrica dos grupamentos metila, no diesel, marcam as posições 2921 e 2858 cm⁻¹, respectivamente. Nota-se que estes dois picos são examinados com frequência em compostos com grande número de hidrocarbonetos ⁽¹³¹⁾. Para o biodiesel a banda fixada em 1750 cm⁻¹ está associada à deformação axial da carbonila pertencente ao grupo funcional éster e a banda a qual representa a deformação axial C-O em 1300-1100 cm⁻¹ complementa a presença de um grupo éster. O grupo dos álcoois está nitidamente representado pelo intenso e largo pico na região de 3300 cm⁻¹ pela hidroxila, –OH, sendo tal espectro complementado pela banda localizada na região de 1200-1100 cm⁻¹ característica da ligação C-C-O. Há também, no pico relacionado à hidroxila do álcool a marcação em

vermelho, a qual representa o estudo referente à sua área, largura a meia altura e largura.

Figure 3 Espectros de infravermelho da blenda ternária sem adição de nano partículas de Al_2O_3 , (a) 0 ppm, e com adição de partículas de Al_2O_3 à (b) 30 ppm, (c) 45 ppm e (d) 60ppm.

Figure 4. Espectros de infravermelho da blenda ternária com nano partículas de Al_2O_3 . (e) 75ppm, (f) 90 ppm e (g) 120 ppm.

A banda relacionada ao grupamento –OH do álcool apresenta redução significativa da área ⁽¹⁵⁾, largura à meia altura máxima e largura por influência da adição do marcador inorgânico, alumina, conforme lista a Tabela II, Tal fato ocorre, possivelmente, pela diminuição da concentração das hidroxilas livres do álcool - resultado das interações moleculares destas e os oxigênios do aditivo ⁽¹⁶⁾.

Concentração (ppm)	Área	Largura à meia altura - FWHM	Largura
0	360,09	286,61	121,71
30	311,16	342,22	145,32
45	222,36	305,12	129,57
60	227,48	277,65	117,91
75	212,10	273,33	116,07
90	197,84	256,77	109,04
120	92,17	194,97	82,80

Tabela II. Medidas de área, largura à meia altura e largura da banda relacionada ao grupo hidroxila do álcool.

Os resultados dos parâmetros de análise térmica da blenda $B_{40}D_{50}E_{10}$ à 20, 30, 40 e 50°C, condutividade e resistividade são listados nas Tabelas III e IV, sendo o comportamento da condutividade, em função a temperatura e concentração alumina.

Tabela III. Condutividade térmica da blenda e blenda marcadas com Al₂O₃, em ppm.

Temperatura (ºC)	k (w/mK)								
	0	30	45	60	75	90	120		
20	0,135	0,137	0,134	0,131	0,130	0,127	0,129		
30	0,154	0,158	0,160	0,161	0,161	0,160	0,168		
40	0,210	0,188	0,199	0,191	0,194	0,189	0,182		
50	0,245	0,195	0,239	0,219	0,245	0,236	0,220		

Tabela IV	. Resistividade	térmica da	a blenda e	blendas	marcadas	com Al ₂ O ₃ ,	em ppm.
-----------	-----------------	------------	------------	---------	----------	--------------------------------------	---------

Temperatura (ºC)	R (ºC.cm/w)								
	0	30	45	60	75	90	120		
20	738,0	730,3	747,2	761,6	766,6	788,6	774,7		
30	648,3	632,9	626,8	623,0	620,0	625,9	595,0		
40	476,0	533,1	503,7	523,4	515,1	527,7	548,3		
50	407,7	512,8	417,8	456,7	408,8	423,0	454,2		

A análise do comportamento da condutividade térmica em função à concentração de nano partículas, Figura 5, é dada pelo monitoramento da mesma em função da temperatura e concentração, mutuamente.

Figura 5. Evolução da condutividade térmica das blendas ternárias marcadas com alumina em função à concentração das nano partículas.

O comportamento térmico das amostras em estudo mostrou-se dependente da temperatura, em virtude da relação movimento Browniano/tamanho das partículas em solução ⁽¹⁷⁾. No entanto, a concentração de Al₂O₃ apresentou certa descontinuidade nos valores de condutividade térmica, a qual pode ser explicada pela ausência de compostos dispersantes, neste trabalho, que melhore a estabilidade das nano partículas em dissolução ⁽¹⁸⁾.

CONCLUSÃO

A caracterização por espectroscopia de infravermelho mostrou-se adequada para monitorar a interação entre os compostos de blenda. Nos espectros IV identifica-se a interação entre os componentes da blenda, assim como, a interação destes com o marcador inorgânico adicionado. O deslocamento apresentado à banda hidroxila do álcool define-se pela interação deste grupo funcional com os oxigênios da alumina, Al₂O₃. A temperatura influencia de forma direta este parâmetro. Ainda, a blenda marcada quando caracterizada à 30°C mostrou forte dependência da condutividade térmica em função da concentração do marcador inorgânico. Este comportamento indica que o acoplamento via interação de

"clusters" moleculares resultantes da interação entre componentes da blenda e superfície de partículas exibem condições de optimização.

AGRADECIMENTOS

À Alcoa e SMALL pela doação de produtos. M. A. L. Nobre agradece às agências financiadoras CNPq e FAPESP : CNPq/505139/2010-3, CNPq/374919/2011-9, CNPq/481516/2010-7, CNPq/308924/2009-6 e FAPESP/ 02/05997-9.

REFERÊNCIAS

⁽¹⁾ BASHA, J. S.; ANAND, R. B.; Role of nanoaditive blended biodiesel emulsion fuel on the working characteristics of a diesel engine, **Journal Of Renewable And Sustainable Energy**, vol. 3, p. 023106/1-17, (2011).

⁽²⁾ HE, H.; YU, Y.; Selective catalytic reduction of NOx over Ag/Al2O3 catalyst: from reaction mechanism to diesel engine test, **Catalysis Today**, vol. 100, p. 37–47, (2005).

⁽³⁾ NEJAR, N.; ILLA'N-GO'MEZ, M. J.; Potassium–copper and potassium–cobalt catalysts supported on alumina for simultaneous NOx and soot removal from simulated diesel engine exhaust, **Applied Catalysis B: Environmental**, vol. 70, p. 261–268, (2007).

⁽⁴⁾ FONTANA, A. J.; WACKER, B.; CAMPBELL, C. S.; CAMPBELL C. G.; Simultaneous Thermal Conductivity, Thermal Resistivity, and Thermal Diffusivity measurement of Selected Foods and Soils, **ASAE (The Society for engineering in agricultural, food, and biological systems)**, p. 016101/0-6, (2001).

⁽⁵⁾ BRITO, I. AP. O.; Análise das Interações Moleculares em Blendas Sintéticas tipo Biodiesel/Diesel por Espectroscopia Dielétrica e Vibracional de Absorção na Região do Infravermelho. *2011*. Dissertação (Mestrado) Universidade Estadual Paulista, Campus de Presidente Prudente, Presidente Prudente – SP, 2011.

⁽⁶⁾ LIN, M.; AL-HOLY, M.; AL-QADIRI, H.; KANG, D-H.; CAVINATO, A. G.; HUANG, Y.; RASCO, B. A.; Discrimination of Intact and Injured Listeria monocytogenes by

Fourier Transform Infrared Spectroscopy and Principal Component Analysis, J. Agric. Food Chem, vol. 52, p. 5769–5772, (2004).

⁽⁷⁾ ZHANG, W-B.; Review on analysis of biodiesel with infrared spectroscopy, **Renewable and Sustainable Energy Reviews**, vol. 16, p. 6048–6058, (2012).

⁽⁸⁾ DHARMALINGAM, K.; RAMACHANDRAN, K.; SIVAGURUNATHAN P.; FTIR and dielectric studies of molecular interaction between alkyl methacrylates and primary alcohols, **Physica B**, vol. 392, p. 127–131, (2007).

⁽⁹⁾ ZANGIROLAMO, E. Q.; SERIBELI, F. L.; MARTINS, G. O.; NOBRE, M. A. L.; Análise da Condutividade Térmica de Aditivos Comerciais para Radiadores Modificados com Adição de Partículas Óxidos, In: **20º CBECIMAT-Congresso Brasileiro de Engenharia e Ciência dos Materiais**, 2012, Joinville, SC, Brasil.

⁽¹⁰⁾ ARRUDA, P.V.; RODRIGUES R. C. L. B.; FELIPE, M. G. A.; Glicerol: um subproduto com grande capacidade industrial e metabólica, **Analytica**, nº 26, (2006-2007).

⁽¹¹⁾ BORGES, S. S.; KORN, M.; Geração sono química de oxidantes em solução aquosa saturada de tetracloreto de carbono, *Química Nova*, vol. 25, nº 4, p. 558-562, (2002).

⁽¹²⁾ WILLIAMSOM, G. K.; HALL, W. H.; X-ray line broadening from filed aluminium and wolfram, **Acta Metallurgica**, vol. 1, p. 22-31, (1953).

⁽¹³⁾ SILVERSTEIN, R. M.; WEBSTER, F. X.; Identificação espectrométrica de compostos orgânicos. LTC: 2000.

⁽¹⁴⁾ BROCK, J.; NOGUEIRA, M. R.; ZAKRZEVSKI, C.; CORAZZA, F. C.; CORAZZA,
M. L.; OLIVEIRA, J. V.; Determinação experimental da viscosidade e condutividade térmica de óleos vegetais, Ciência e Tecnologia de Alimentos, vol. 28, nº 3, p. 564-570, (2008).

⁽¹⁵⁾ MARTINS, G. O.; MARTINS, T. S. M.; SERIBELI, F. L.; NOBRE, M. A. L.; Efeitos da Variação de Concentração de Marcador Inorgânico à Base de Alumina sobre a

Condutividade Térmica de Blenda Combustível do Sistema Diesel-Biodiesel-Etanol, In: **20º CBECIMAT-Congresso Brasileiro de Engenharia e Ciência dos Materiais**, 2012, Joinville, SC, Brasil.

⁽¹⁶⁾ GILBERT, A. S.; Hydrogen Bonding and Other Physicochemical Interactions Studied by IR and Raman Spectroscopy, **Elsevier Ltd**, vol. 1, p. 837–843, (1999).

⁽¹⁷⁾ FONSECA, H. M.; Caracterização termofísica de nanofluidos. 2007. Dissertação (Mestrado) Universidade Federal do Rio de Janeiro, Rio de Janeiro – RJ, 2007.

⁽¹⁸⁾ Xuan, Y.; Li, O.; Heat transfer enhancement of nanofluids, **Int. Journal of Heat and Fluid Flow**, vol. 21, p.68-64.

ANALYSIS OF MOLECULAR INTERACTIONS BETWEEN ALUMINA PARTICLES AND COMPLEX FLUIDS TYPE BLENDS BIOFUELS / DIESEL BY THERMAL CONDUCTIVITY TESTS AND MEASURES IN INFRARED SPECTROSCOPY

ABSTRACT

The Al_2O_3 alumina was used as an inorganic marker in a functional fluid based on diesel, biodiesel and anhydrous ethanol, which were added in the following concentrations: 0, 30, 45, 60, 75, 90 and 120 ppm. Marked blend of the ternary system with composition: 50% diesel (D), 40% Biodiesel (B) and 10% ethanol (E), called $D_{50}B_{40}E_{10}$ were prepared. Blends were characterized by IR spectroscopy in the region of 4000-400 cm-1, mid infrared. The position of band and width at half height associated with the group -OH of the anhydrous ethanol also depends on the fraction of Al_2O_3 added. The parameter thermal conductivity k of each blend is function of fractions of alumina added and measurement temperature. Data are discussed based on the interaction between hydroxyl groups of anhydrous ethanol and surface of Al_2O_3 .

Keywords: biofuel blends, markers inorganic, diesel.