Análise da Temperatura de Curie em Niobatos Ferroelétricos por Espectroscopia de Absorção no Infravermelho

M. R. Besse*, G. Palacio, M. A. L. Nobre, S. Lanfredi

Faculdade de Ciências e Tecnologia – FCT Universidade Estadual Paulista – UNESP Departamento de Física, Química e Biologia – DFQB Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF R. Roberto Simonsen 305, C.P. 467, CEP: 19060-900 Presidente Prudente – SP <u>*manoelabesse@terra.com.br</u>

Resumo

Neste trabalho foi realizada a caracterização estrutural de nanopós de KSr₂Nb₅O₁₅ (KSN) e KSr₂Nb₅O₁₅ dopados com níquel, com estequiometrias KSr₂(Ni_{0,25}Nb_{4,75})O_{15-δ}, KSr₂(Ni_{0,50}Nb_{4,50})O_{15-δ} e KSr₂(Ni_{0,75}Nb_{4,50})O_{15-δ}, preparados pelo Método Poliol Modificado. A caracterização nanopós foi realizada por difração de raios X e espectroscopia no infravermelho. Os difratogramas mostraram a formação de pós monofásicos de KSr₂Nb₅O₁₅ de estrutura tungstênio bronze. A adição dos cátions níquel na estrutura hospedeira do KSN resultou em um deslocamento das bandas associadas à ligação Nb–O para a região de menor número de onda. A partir da equação K = $(\sqrt{2}\pi c)^2 \mu$ determinou-se a constante de força K da ligação Nb-O. Com a determinação de K, o parâmetro Δz , que representa o deslocamento do Nb a partir da posição central do octaedro [NbO₆], pôde ser determinado usando a equação clássica da energia para o oscilador harmônico. A partir dos parâmetros K e Δz determinou-se a Temperatura de Curie dos niobatos investigados.

Palavras-chave: Caracterização estrutural, Espectroscopia de absorção no infravermelho, Niobatos, Temperatura de Curie.

Introdução

Niobatos com estrutura do tipo tungstênio bronze (TB) têm apresentado interesse científico, tecnológico e industrial. A estrutura TB pode ser derivada da clássica estrutura perovskita e pode ser descrita pela fórmula geral (A1)₂(A2)₄(C₄)Nb₁₀O_{30.} A1, A2 e C referem-se aos sítios cristalográficos de coordenação tetragonal, pentagonal e trigonal, respectivamente. Considerando a estrutura do tipo TTB, uma ampla variedade de substituições de cátions tem sido possível devido à presença de vários interstícios

^(1,2). A distribuição de cátions metálicos nos diferentes interstícios dos óxidos de estrutura TB pode modificar suas propriedades físicas tais como elétricas, ferroelétricas e pizoelétricas⁽³⁾. Além disso, alguns óxidos de estrutura TB exibem altas constantes dielétricas. Tais características tornam esses óxidos em atrativos materiais ferroelétricos, particularmente para a fabricação de dispositivos para aplicação em telecomunicações. Uma série de óxidos ferroelétricos policristalinos surgiu devido aos avanços em telecomunicações em micro-ondas, satélites e outros dispositivos relacionados ⁽⁴⁾. Atualmente, niobatos com estrutura do tipo TB têm atraído a atenção principalmente pela alta ansiotropia da estrutura cristalina. Dentre os óxidos de estruturas TB, o óxido niobato de potássio e estrôncio é particularmente interessante, por possuir propriedades ferroelétricas e pertencer à classe de compostos cerâmicos que apresentam grande potencial de aplicação, atuando como sensores, atuadores, memórias, filtros e capacitores⁽⁵⁾. Apesar de vários estudos já realizados, não é reportado na literatura estudos sobre a caracterização desses materiais por espectroscopia vibracional na região do infravermelho. Neste trabalho, a caracterização por espectroscopia IV dos pós de KSr₂Nb₅O₁₅ e de KSr₂Nb₅O₁₅ dopado com níquel foi analisada correlacionando-a com suas características estruturais. A relação direta entre a ligação Nb-O apical no octaedro [NbO₆] com a magnitude do deslocamento do Nb, fora do centro do octaedro, foi correlacionada com a constante de força⁽⁶⁾.

Materiais e Métodos

Procedimento de Síntese

Pó monofásico nanoestruturado de $KSr_2Nb_5O_{15}$ foi sintetizado pelo método poliol modificado. De modo geral, este método oferece um melhor controle dos reagentes, baixas temperaturas de calcinação, material monofásico e pó com elevada área de superfície específica. Os reagentes de partida utilizados para a síntese dos pós foram o ácido nítrico, HNO₃ (99,5% puro), carbonato do estrôncio, SrCO₃ (99,0%), carbonato de potássio, K₂CO₃ (99,0%), etilenoglicol, HOCH₂CH₂OH (98,0%) e oxalato de nióbio, NH₄H₂[NbO(C₂O₄)₃].3H₂O (CBMM-Brasil) ⁽⁶⁾. Para os pós de KSr₂Nb₅O₁₅ dopados com níquel adicionou-se aos reagentes de partida óxido de níquel, Ni₂O₃ (99,0%).

Todos os reagentes foram dissolvidos em ácido nítrico com agitação contínua. Em seguida, 100 ml de etilenoglicol foram adicionados. A solução foi aquecida a 90°C, promovendo o desprendimento de gases do grupo NO₃, similar ao processo desenvolvido pelo método Pechini^(7,8). Depois da reação de poliesterificação obteve-se

um gel polimérico. O polímero mantido no béquer foi submetido à primeira calcinação em um forno tipo mufla. O ciclo de aquecimento ocorreu em duas etapas de calcinação, partindo da temperatura ambiente. Na primeira etapa, a temperatura foi aumentada numa taxa de aquecimento de 10°C/min até atingir 150°C. A partir desse ponto, a temperatura manteve-se constante por 30 min. Na segunda etapa, aumentou-se a temperatura para 300°C e manteve-se o aquecimento constante por 1h. Todo tratamento térmico foi realizado sob fluxo de nitrogênio a 500 ml/min. Após o tratamento térmico, o material foi desaglomerado (350 mesh) em um almofariz de ágata, obtendo-se assim o pó precursor. O precursor foi calcinado em um forno tubular com fluxo de oxigênio de 300 ml/min. O tempo e a temperatura de tratamento térmico do pó precursor foi otimizada para obter pós monofásicos de KSr₂Nb₅O₁₅ com alta cristalinidade. A calcinação foi realizada entre 350 a 1150°C por 1h e a 1150°C por 12h, com taxa de aquecimento de 5°C/min.

Caracterização estrutural.

A determinação dos parâmetros estruturais foi realizada por difratometria de raios X utilizando um difratômetro SHIMADZU (modelo XRD-6000) com radiação Cu K α (λ = 1,54060) e um monocristal de grafite no intervalo de 5 \leq 2 θ \leq 80. O refinamento estrutural foi realizado a partir do método de Rietveld, utilizando o programa FullProf. As ligações químicas foram analisadas por espectroscopia vibracional na região do infravermelho (FTIR). As amostras foram diluídas em KBr na proporção de 1:100. Medidas foram realizadas em uma resolução instrumental de 1cm⁻¹ no intervalo de 1500-400 cm⁻¹, utilizando um espectrômetro com transformada de Fourier modelo Digilab Excalibur (série FTS 3100 HE). O intervalo de medida utilizado corresponde ao infravermelho médio, onde são observadas as bandas características da ligação Nb-O. Uma análise quantitativa do espectro de infravermelho foi realizada por deconvolução dos perfis de absorção utilizando o programa Peak-Fit. O procedimento de deconvolução determina a posição das bandas com melhor precisão, permitindo obter mais informações sobre a posição e a intensidade das mesmas. O espectro de IV foi corrigido dos ruídos de fundo utilizando uma linha base de dois pontos. Para um melhor ajuste foram utilizadas, como bandas de partida, as bandas detectadas previamente a partir do espectro de transmitância, que são compostas por máximos aparentes. O ajuste dos dados foi realizado a partir das funções Gaussianas para cada banda de absorção. A posição do parâmetro da largura média a meia altura (FWHM) e a

intensidade de cada banda foram ajustadas automaticamente pelo programa. A rotina de ajuste foi baseada na minimização de desvios entre o espectro experimental e o teórico. Os dados sobre as posições de pico (números de onda), detectadas automaticamente pelo espectrômetro, foram utilizados como base de dados. Este procedimento reduziu o número de ensaios realizados até serem encontrados os melhores ajustes dos dados.

Resultados e Discussões

A Tabela 1 lista os parâmetros estruturais obtidos a partir do refinamento pelo método de Rietveld dos pós de $KSr_2Nb_5O_{15}$ (KSN) e de suas soluções sólidas $KSr_2(Ni_xNb_{5-x})O_{15-\delta}$ (KSNNi-x), onde x = 0,25; 0,50 e 0,75, calcinados a 1150°C por 12h em atmosfera de oxigênio. Os difratogramas mostraram somente um conjunto de linha de difração associadas à fase $KSr_2Nb_5O_{15}$ de simetria tetragonal e grupo espacial *P4bm* (No. 100), identificada pela ficha JCPDS 34-0108.

Tabela 1: Dados cristalográficos do KSr ₂ Nb ₅ O ₁₅ e KSr ₂ Nb ₅ O ₁₅ dopados com níquel						
Dados cristalográficos						
Fórmula	KSN	KSNNi-0,25	KSNNi-0,50	KSNNi-0,75		
a [Å]	12,46663	12,46370	12,46141	12,46201		
c [Å]	3,94185	3,93633	3,93660	3,92215		
v [Å]	612,629	611,485	622,302	609,116		
χ^2	3,22	5,57	4,85	8,64		

A Figura 1 mostra o espectro de absorção no infravermelho e a curva do ajuste teórico do pó de $KSr_2Nb_5O_{15}$ nanoestruturado obtido após o processo térmico a 1150°C por 12h.

57º Congresso Brasileiro de Cerâmica 5º Congresso Iberoamericano de Cerâmica 19 a 22 de maio de 2013, Natal, RN, Brasil

Figura 1. Espectro de absorção no infravermelho do KSr₂Nb₅O₁₅ e o ajuste teórico.

Foram observados, na estrutura hospedeira do KSr₂Nb₅O₁₅, um conjunto de 8 bandas entre 400 e 900 cm⁻¹, sendo seis bandas largas e assimétricas na região de mais alta frequência localizadas a 549, 607, 663, 723, 786 e 870 cm⁻¹, respectivamente, e duas bandas estreitas na região de baixa intensidade a 476 e 416 cm⁻¹. Todas as bandas foram atribuídas à ligação Nb–O ^(9,10). De acordo com a Fig. 1, a banda vibracional de maior intensidade centralizada a 416 cm⁻¹, exibe uma significativa contribuição do espectro.

A Figura 2 mostra os espectros de absorção no infravermelho e as curvas do ajuste teórico dos pós de $KSr_2(Ni_{0,25}Nb_{4,75})O_{15-\delta}$, $KSr_2(Ni_{0,50}Nb_{4,50})O_{15-\delta}$ e $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$.

Figura 2. Espectro de absorção no infravermelho dos pós de $KSr_2(Ni_{0,25}Nb_{4,75})O_{15-\delta}$, $KSr_2(Ni_{0,50}Nb_{4,50})O_{15-\delta}$ e $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$ com as respectivas curvas dos ajustes teóricos.

Com a adição dos cátions níquel na estrutura hospedeira observou-se um deslocamento das bandas associadas à ligação Nb–O para a região de um menor número de onda, nos espectros do KSr₂(Ni_{0,25}Nb_{4,75})O_{15-ō}, KSr₂(Ni_{0,50}Nb_{4,50})O_{15-ō} e KSr₂(Ni_{0,75}Nb_{4,25})O_{15-ō} em relação à estrutura hospedeira. No entanto, em todos os espectros investigados, uma banda vibracional de elevada intensidade foi observada em torno de 416 cm⁻¹, exibindo uma significativa contribuição ⁽⁶⁾. Com base no fato que a unidade [NbO₆] compõe a estrutura hospedeira do niobato de KSr₂Nb₅O₁₅, as características desta banda são compatíveis com um modo normal de vibração, o qual pode ser atribuído à ligação de nióbio com oxigênio apical do octaedro [NbO₆] ⁽⁹⁾. O deslocamento das bandas para a região de menor número de onda no KSr₂(Ni_{0,25}Nb_{4,75})O_{15-ō}, KSr₂(Ni_{0,50}Nb_{4,50})O_{15-ō} e KSr₂(Ni_{0,75}Nb_{4,25})O_{15-ō} implica em um aumento do caráter covalente da ligação Nb–O–Nb. A Eq.(A) descreve os parâmetros físicos que influenciam na frequência de estiramento da ligação covalente, onde K é a constante de força, v é a frequência e μ a massa reduzida ⁽¹¹⁾.

$$K = (\bar{\nu}2\pi c)^2 \mu \tag{A}$$

A partir da determinação de K, o parâmetro Δz , que representa o deslocamento do Nb a partir da posição central do octaedro [NbO₆], pode ser determinado a partir da equação clássica da energia do oscilador harmônico, Eq. (B), a qual é uma aproximação da Lei de Hooke ⁽¹²⁾.

$$E(z) = \frac{1}{2} K (\Delta z)^2$$
(B)

Utilizando o valor de energia E (z) encontra-se o valor de Δz , como mostrado na Tabela 2, os quais se aproximam dos valores derivados das análises estruturais ⁽¹³⁾. A partir de ambos os parâmetros K e Δz foi determinado, neste trabalho, a Temperatura de Curie dos niobatos investigados, utilizando a Eq. (C), onde k representa a constante de Boltzmann (1,3806503 × 10⁻²³ m² kg s⁻² K⁻¹).

$$T_{c} = \frac{K}{2k} (\Delta z)^{2}$$
 (C)

Os parâmetros calculados e a Temperatura de Curie para o KSr₂Nb₅O₁₅ e KSr₂Nb₅O₁₅ dopado com níquel são listados na Tabela 2.

Fórmula	KSN	KSNNi-0,25	KSNNi-0,50	KSNNi-0,75
Ε (λ) (J)	5,7702x10 ⁻²¹	5,4928x10 ⁻²¹	5,3441x10 ⁻²¹	5,2234x10 ⁻²¹
K (Kg/s ²)	1,3936x10 ²	1,3869x10 ²	1,3802x10 ²	1,3802x10 ²
Δz (Å)	0,091	0,089	0,088	0,087
T _c	417 K	398 K	387 K	378 K

 Tabela 2. Dados calculados a partir das equações A, B e C

Com o aumento da concentração de cátions níquel na estrutura hospedeira do $KSr_2Nb_5O_{15}$ observa-se uma diminuição da temperaturas de Curie. A adição de cátions níquel na estrutura provoca uma diminuição do valor de Δz , o qual está relacionado com a magnitude do deslocamento do Nb a partir da posição central do octaedro $[NbO_6]$. Este fenômeno pode ser associado com a diminuição do caráter covalente em consequência do aumento do caráter iônico da estrutura, implicando assim na diminuição da polarização espontânea. Neste sentido, os cátions nióbio tendem a ocupar a posição central do octaedro quando isso ocorre na mesma direção ou próximo do eixo polar.

Conclusões

Uma boa correlação é observada entre a energia de comprimento de onda e a energia do oscilador harmônico com o deslocamento Δz , quando este ocorre na mesma direção ou próximo ao eixo de polarização. A determinação prévia da constante de força K é fundamental, assim como o carácter covalente da ligação. A partir da determinação de K, Δz também pode ser determinado. Conhecendo-se os valores de K e Δz pode-se então determinar um dos parâmetros mais importantes que caracterizam a polarização ferroelétrica, que é a temperatura de Curie. Esta pode ser facilmente determinada pela equação universal $T_c = \frac{K}{2k} (\Delta z)^2$, onde k representa a constante de Boltzmann.

Referências

¹ Garcia, G. E; Torres, P.A.; Jimenez, R.; Gonzalez, C. J. M., Structural Singularities in Ferroelectric $Sr_2NaNb_5O_{15}$, **Chemistry of Materials**, 19, No. 14, 3575–3580 (2007).

² Simon, A.; Ravez, J., Solid-State Chemistry and Non-Linear Properties of Tetragonal Tungsten Bronzes materials, **Comptes Rendus Chimie**, 9, No. 10, 1268–1276 (2006).

³ Chandramouli, K.; Koduri, R., Dielectric and Pyroelectric Studies of Li-modified Rare-earth Dysprosium-doped Barium Strontium Sodium Niobato Ceramics, **Journal Of Materials Science**, 44, No. 7, 1793–1799 (2009).

⁴ Kolar, D.; Gaberscek, S.; Stadler, Z.; Suvorov, D.; High Stability, Low loss Dielectics in the system BaO-Nd₂O₃-TiO₂-Bi₂O₅, **Ferroelectrics**, 27, No. 6, 269–272 (1980).

⁵ Giess, E. A.; Burns, G.; O'Kane, D. F.; Smith, A. W., Ferroelectric and Optical Properties of KSr₂Nb₅O₁₅, **Applied Physics Letters**, **11**, No. 7, 233–234 (1967).

⁶ LANFREDI, S.; BRITO, I., A., O.; POLINI, C.; NOBRE, M., A., L.; Deriving The Magnitude Of Niobium Off-Center Displacement In Ferroelectric Niobates From Infrared Spectroscopy, **Journal of Applied Spectroscopy**, 79, 254-260, (2012).

⁷ Pechini, M. P.; **U.S. Patent**, No. 3.330.697 (1967).

⁸ Lanfredi, S.; Cardoso, C. X.; Nobre, M. A. L.; Crystallographic properties of KSr2Nb₅O₁₅, **Materials Science and Engineering**, 112, No. 2–3, 139–143 (2004).

⁹ Farrel, F.J.; Maroni, V. A.; Spiro, T.G.; Inorganic Chemistry, **8**, No. 12, 2638–2642 (1969).

¹⁰ Jehng, J. M.; Wachs, I. E.; Structural Chemistry and Raman Spectra of Niobium Oxides, **Chemistry of Materials**, **3**, No. 1, 100–107 (1991).

¹¹ Lei, J.-H.; Xing, P.-F. Tang,; Y.-J.; Wu, W.-D.; Wang, F.; Journal Applied **Spectroscopy**, **77**, No. 1, 140–143 (2010). 259

¹² Atkins, P. W., **Physical Chemistry**, Oxford University Press, New York (1998).

¹³ Lanfredi, S.; Genova, D. H. M.; Brito, I. A. O.; Lima, A. R. F.; Nobre, M. A. L., Structutal characterization and Curie temperatute determination of a sodium strontium niobato ferroelectric nanostructured power, **Journal of Solid State Chemistry**, 184, No.5, 990–1000 (2011)

Analysis of the Curie Temperature in Ferroelectric Niobates by Infrared Spectroscopy

<u>M. R. Besse</u> *, G. Palacio, M. A. L. Nobre, S. Lanfredi Faculdade de Ciências e Tecnologia – FCT Universidade Estadual Paulista – UNESP C.P. 467, CEP: 19060-900, Presidente Prudente – SP <u>*manoelabesse@terra.com.br</u>

Abstract

In this work was performed the structural characterization of $KSr_2Nb_5O_{15}$ (KSN), and Niquel-doped $KSr_2Nb_5O_{15}$ nanopowders with stoichiometry $KSr_2(Ni_{0,25}Nb_{4,75})O_{15-\delta}$, $KSr_2(Ni_{0,50}Nb_{4,50})O_{15-\delta}$ and $KSr_2(Ni_{0,75}Nb_{4,50})O_{15-\delta}$ prepared by modified polyol method. Nanopowders were characterized by X-ray diffraction and mid-infrared spectroscopy (FTIR). X-ray diffraction patterns showed only a set of diffraction lines ascribed to the $KSr_2Nb_5O_{15}$ of TTB-type structure. The addition of nickel cations in the KSN host structure resulted in a displacement of the bands associated with Nb-O bond to the region of lower

wavenumber. From equation $K = (v2\pi c)^2 \mu$ was derived the force constant K of Nb-O bond. From K determining, the Δz parameter that represents the Nb displacement from the central position of the [NbO₆] octahedron can be also determined using the classic equation of the energy for harmonic oscillator. From both K and Δz parameters, one of most important parameter that characterize the ferroelectric polarization, that is the Curie temperature, was determined for the niobates investigated.

Keywords: Structural characterization, Infrared spectroscopy, Niobates, Curie Temperature.