Análise do Potencial Catalítico do Óxido de Alumínio Dopado com Európio (III) na produção de Biodiesel via Rota Etílica

M. R. Besse*, P. G. P. Moraes, M. A. L. Nobre, S. Lanfredi

Faculdade de Ciências e Tecnologia – FCT
Universidade Estadual Paulista – UNESP
Departamento de Física, Química e Biologia – DFQB
Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF
R. Roberto Simonsen 305, C.P. 467, CEP: 19060-900
Presidente Prudente – SP
*manoelabesse@terra.com.br

Resumo

O presente trabalho envolve a preparação e a caracterização estrutural de um catalisador (conversor catalítico) à base de alumina para síntese de Biodiesel via rota etílica. A partir da estrutura hospedeira do Al_2O_3 foram investigadas as soluções sólidas de Al_2O_3 : $Eu^{3+}_{(0,025\%)}$, Al_2O_3 : $Eu^{3+}_{(0,050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0,075\%)}$, preparados pelo Método Poliol Modificado. A otimização de parâmetros necessários à obtenção de nanopartículas e partículas nanoestruturadas de Al_2O_3 : Eu^{3+} foi acompanhada por difração de raios X e espectroscopia de absorção no infravermelho (FTIR). Os parâmetros estruturais foram determinados a partir do refinamento dos difratogramas pelo Método de Rietveld, utilizando o programa FULLPROF. Os nanopós exibiram grupo espacial R-3c de simetria romboédrica. O estudo catalítico, utilizando os nanopós de Al_2O_3 : Eu^{3+} , foram realizado a partir da catálise heterogênea, com adição das nanopartículas em solução contendo óleo vegetal e álcool etílico.

Palavras-chave: óxido de alumínio dopado com európio, espectroscopia de absorção na região do infravermelho, catálise heterogênea.

Introdução

Cerâmicas à base de óxido de alumínio – alumina - vêm sendo estudadas por possibilitarem um grande número de aplicações tecnológicas, graças às propriedades de seus óxidos. Dentre as principais propriedades do óxido de alumínio pode-se citar a alta estabilidade térmica, alta resistividade elétrica e alta resistência química. A alumina existe em mais de 15 fases cristalográficas metaestáveis distintas, as quais são intermediárias e levam por tratamento térmico a sua estrutura mais estável, a alumina $\alpha^{(1,2)}$.

Esses óxidos são utilizados principalmente para fabricações de refratários, abrasivos, porcelanas e cerâmicas avançadas, entre outras aplicações. A γ-alumina é amplamente

utilizada como suporte de catalisador em processos químicos sob condições moderadas de trabalho, para manter a área superficial do suporte, livre de sinterizações ou fase de transição (1)

As vantagens que levam a utilização da γ-alumina, como suporte, incluem o seu baixo custo, facilidade de controle de suas propriedades texturais e boa resistência mecânica, térmica e hidrotérmica, o que é importante no que concerne à regenerabilidade do catalisador. A estabilidade térmica para este composto é dada com o uso de modificadores a base de metais alcalinos terrosos e/ou terras raras, que têm demonstrado eficientes para essas finalidades^(1,3).

Neste trabalho, as otimizações de parâmetros necessários à obtenção de nanopartículas e partículas nanoestruturadas de Al_2O_3 e Al_2O_3 dopados com íons európio (III) foram acompanhados por difração de raios X e por espectroscopia vibracional na região do infravermelho. Ensaios catalíticos do material para a produção de biodiesel, a partir de óleo de soja comercial via rota etílica, foram analisados por espectroscopia de IV.

Materiais e Métodos

Procedimento de Síntese

Pó monofásico nanoestruturado de Al_2O_3 foi sintetizado pelo método poliol modificado. De modo geral, este método oferece um melhor controle dos reagentes, baixas temperaturas de calcinação, material monofásico e pó com elevada área de superfície específica. Os reagentes de partida para a síntese do pó precursor de Al_2O_3 foram: ácido nítrico (HNO $_3$), nitrato de alumínio hidratado (AlN $_3O_9$. 9H $_2O$) e etilenoglicol (HOCH $_2$ CH $_2OH$).

Todos os reagentes foram dissolvidos em ácido nítrico com agitação contínua. Em seguida, 40 ml de etilenoglicol foram adicionados. A solução foi aquecida a 90°C, promovendo o desprendimento de gases do grupo NO₃, similar ao processo desenvolvido pelo método Pechini ^(4,5). Após a reação de poliesterificação obteve-se uma resina polimérica. O polímero mantido no béquer foi submetido à primeira calcinação em um forno tipo mufla. O ciclo de aquecimento ocorreu em duas etapas de calcinação, partindo da temperatura ambiente. Na primeira etapa, a temperatura foi elevada a uma taxa de aquecimento de 10°C/min até atingir 150°C, a qual foi mantida constante por 1 hora para eliminação de moléculas de baixa massa molecular como vapor de água e alguns compostos orgânicos. Na sequência, mantendo a mesma taxa de aquecimento, a temperatura foi elevada a 300 °C, sendo mantida nessa temperatura por 2 horas para a eliminação parcial dos elementos não pertencente à

estequiometria da fase. Todo tratamento térmico foi realizado sob fluxo de nitrogênio a 300 ml/min. Após o tratamento térmico, o material foi desaglomerado em almofariz de ágata, passado em peneira de 350 mesh, obtendo-se assim o pó precursor. O precursor foi calcinado em um forno tubular com fluxo de ar. O tempo e a temperatura de tratamento térmico do pó precursor foi otimizada para obter pós monofásicos de Al₂O₃ com alta cristalinidade. A calcinação foi realizada entre 500 e 1200°C por 1h, com taxa de aquecimento de 10°C/min sem fluxo.

Após a obtenção de pós nanométricos de Al_2O_3 , este material foi dopado com 0,025%, 0,050% e 0,075% em massa de óxido de európio (Eu_2O_3), pelo método Poliol Modificado.

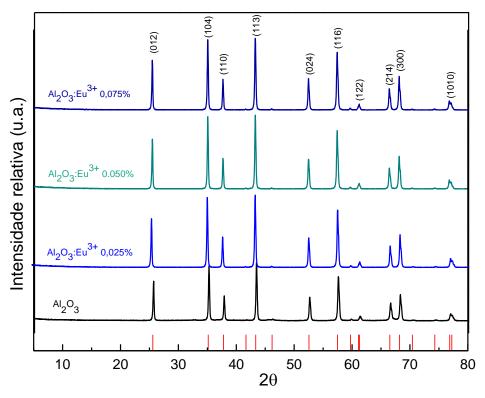
Caracterização estrutural.

As ligações químicas foram analisadas por espectroscopia vibracional na região do infravermelho (FTIR). As amostras foram diluídas em KBr na proporção de 1:100. Medidas foram realizadas em uma resolução instrumental de 1 cm⁻¹ no intervalo de 4000-400 cm⁻¹, utilizando um espectrômetro com transformada de Fourier modelo Digilab Excalibur (série FTS 3100 HE). O intervalo de medida utilizado corresponde ao infravermelho médio. O espectro de IV foi corrigido dos ruídos de fundo utilizando uma linha base de dois pontos.

A caracterização estrutural do pó de Al_2O_3 foi realizada por difração de raios X (DRX) utilizando um difratômetro Shimadzu (modelo XRD-6000) com radiação Cu K α (λ = 1,54060), operando-se a 40kV e 30mA, no intervalo de 5 \leq 20 \leq 80, com tempo de varredura de 0,50°/min, passos de 0,02° e tempo por passo igual a 2,40 s.

A análise da evolução da cristalinidade foi realizada utilizando-se o programa Jade 8 Plus ⁽⁶⁾. Este programa possui uma interface gráfica de alta resolução, além de diversas funções que permitem calcular uma série de parâmetros estruturais do material, a partir dos dados obtidos a partir do difratogramas.

Testes catalíticos


Para estudo da atividade catalítica dos nanopós de Al₂O₃:Eu³⁺, na produção de biodiesel, limpou-se a superfície do catalisador por meio de tratamento térmico a fim de ativálo para a reação, deixando-o livre de moléculas de água e impurezas. Foram realizados ensaios utilizando razão molar óleo/álcool 1:40 com 5% em massa de catalisador. A mistura reacional foi colocada em um balão de fundo redondo e mantida sob aquecimento a 100 °C em banho de glicerina, com agitação constante e sob refluxo. A temperatura do sistema foi

monitorada por um termômetro acoplado ao balão. Alíquotas do material foram retiradas de hora em hora por um período de 8 horas.

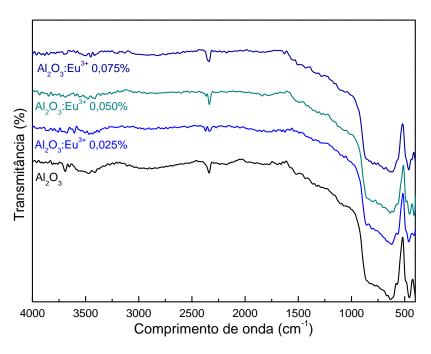
Resultados e Discussões

Caracterização Estrutural por Difração de Raios X

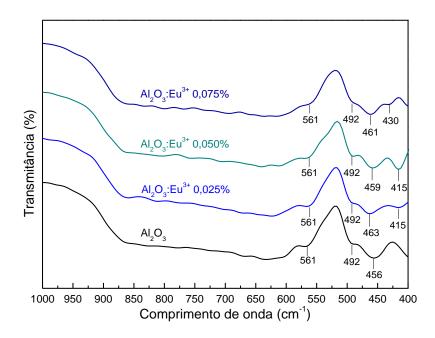
Os resultados obtidos na caracterização estrutural por difração de raios X dos pós de Al_2O_3 e de suas soluções sólidas dopadas com európio (III) com porcentagem em massa igual a 0,025%, 0,050% e 0,075%, mostraram a formação de nanopós monofásicos e de elevada cristalinidade com o tratamento térmico a 1050 °C por 1h. A Figura 1 mostra os difratogramas de raios X dos nanopós de Al_2O_3 , Al_2O_3 : $Eu^{3+}_{(0,025\%)}$, Al_2O_3 : $Eu^{3+}_{(0,050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0,075\%)}$.

Figura 1: Difratogramas de raios X para os compostos de Al_2O_3 , Al_2O_3 : $Eu^{3+}_{(0,025\%)}$, Al_2O_3 : $Eu^{3+}_{(0,050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0,075\%)}$ obtidos a 1050 °C por 1h indexados pelas fichas JCPDS: 43-1484.

A Tabela 1 lista os parâmetros estruturais obtidos a partir do refinamento pelo método de Rietveld dos pós de Al_2O_3 e Al_2O_3 dopados com íons európio (III) em diferentes porcentagens de massa, calcinados a 1050°C por 1h em atmosfera de ar. Os difratogramas mostraram somente um conjunto de linha de difração associadas à fase Al_2O_3 de simetria romboédrica e grupo espacial R-3c, identificada pela ficha JCPDS: 43-1484 referente à α -alumina.


Tabela 1: Dados cristalográficos do Al₂O₃ e Al₂O₃:Eu³⁺ em diferentes porcentagem de massa.

Dados cristalográficos					
Fórmula	Al ₂ O ₃	$Al_2O_3:Eu^{3+}_{0,025}$	$Al_2O_3:Eu^{3+}_{0,050}$	$Al_2O_3:Eu^{3+}_{0.075}$	
a [Å]	4,75795	4,75681	4,75735	4,75716	
c [Å]	12,98910	12,98629	12,98780	12,98734	
v [Å]	254,654	254,276	254,563	254,534	
χ^2	2,96	3,43	3,06	3,11	


A adição de cátions európio (III) na estrutura da alumina provocou uma diminuição dos valores associados aos parâmetros de rede e do volume das soluções sólidas de Al₂O₃:Eu³⁺, comprovando a incorporação dos cátions na superfície da estrutura cristalina.

Espectroscopia de Absorção na Região do Infravermelho

As Figuras 2 e 3 mostram os espectros de absorção na região do infravermelho dos compostos de Al₂O₃, Al₂O₃:Eu³⁺_(0,025%), Al₂O₃:Eu³⁺_(0,050%) e Al₂O₃:Eu³⁺_(0,075%) tratados termodinamicamente a 1050 °C por 1h. A Figura 2 apresenta os espectros de infravermelho no intervalo de número de onda de 400 a 4000 cm⁻¹, enquanto que Figura 3 mostra os espectros expandidos para o intervalo entre 1000 e 400 cm⁻¹. A atribuição tentativa das bandas de absorção é mostrada na Tabela 2.

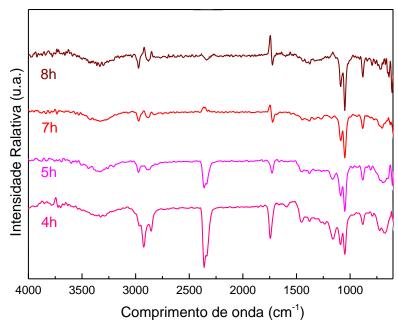
Figura 2: Espectro de absorção na região do infravermelho dos compostos de Al_2O_3 , Al_2O_3 : $Eu^{3+}_{(0,025\%)}$, Al_2O_3 : $Eu^{3+}_{(0,050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0,075\%)}$ obtidos a 1050 °C por 1h, no intervalo entre 4000 e 400 cm⁻¹.

Figura 3: Espectro de absorção na região do infravermelho dos compostos de Al_2O_3 , Al_2O_3 : $Eu^{3+}_{(0,025\%)}$, Al_2O_3 : $Eu^{3+}_{(0,050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0,075\%)}$ obtidos a 1050 °C por 1h, no intervalo entre 1000 e 400 cm⁻¹.

Tabela 2: Atribuição tentativa das bandas de absorção na região do infravermelho para os nanopós de Al_2O_3 ; $Eu^{3+}_{(0.025\%)}$, Al_2O_3 : $Eu^{3+}_{(0.050\%)}$ e Al_2O_3 : $Eu^{3+}_{(0.075\%)}$.

1. 12 - 3				
Bandas de Absorção (cm ⁻¹)	Atribuição			
415 – 430	(Eu-O)			
456 – 561	(Al-O)			

A partir dos espectros vibracionais de absorção na região do infravermelho, dos materiais analisados, identificou-se abaixo de 600 cm⁻¹ as bandas referentes às ligações metal oxigênio (M – O) do óxido de alumínio. A dopagem de 0,025%, 0,050% e 0,075% em massa de íons trivalentes európio pode ser identificada pela banda apresentada em torno de 415 cm⁻¹, indicando a presença efetiva dos íons Eu³⁺ na rede cristalina ⁽⁷⁾. Esta banda apresenta um descolamento para uma região de maior comprimento de onda (430 cm⁻¹) com o aumento da porcentagem de íons európio (III) na estrutura hospedeira ⁽⁸⁾.


A partir da análise da Figura 3, o espectro no intervalo de 456 a 561 cm⁻¹ apresentou 3 bandas associadas às ligações Al-O. A adição de cátions európio (III) na estrutura hospedeira do Al₂O₃ mostrou um deslocamento da banda identificada em 456 cm⁻¹, referentes às ligações Al-O, para um maior comprimento de onda, com o aumento da concentração de európio (III).

Testes catalíticos

Os testes catalíticos foram realizados para a composição de Al₂O₃:Eu³⁺_(0,025%). Alíquotas foram retiradas da mistura reacional a cada 60 minutos, totalizando um intervalo de tempo de

8 horas de reação. O biodiesel formado, a partir do óleo de soja comercial e catalisado pelo Al_2O_3 : $Eu^{3+}_{(0,025\%)}$ via rota etílica, foi analisado por espectroscopia vibracional na região do infravermelho.

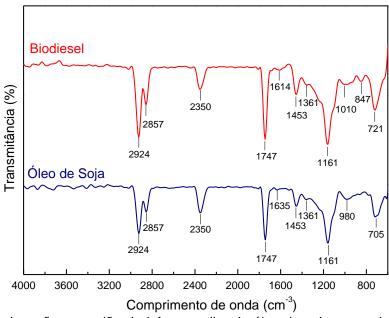

A Figura 4 apresenta os espectros de infravermelho obtidos durante o intervalo de 4 a 8 horas de reação. A melhor definição das bandas associadas aos ésteres, características do biodiesel, foi observada a partir de 4 horas de reação, com aquecimento e constante agitação do meio reacional.

Figura 4: Espectros de absorção na região do infravermelho dos ensaios catalíticos, utilizando o catalisador Al₂O₃:Eu³⁺ 0,025% entre 4, 5, 7 e 8 h de reação.

O biodiesel formado, após a investigação do intervalo de tempo de reação, foi comparado ao óleo de soja comercial, utilizando a espectroscopia vibracional na região do infravermelho para análise das ligações relacionadas ao grupo éster.

A Figura 5 mostra a comparação entre o biodiesel formado com o tempo de 8 h e o óleo de soja comercial. As atribuições tentativas das bandas de absorção para os espectros são mostradas na Tabela 3.

Figura 5: Espectro de absorção na região do infravermelho do óleo de soja comercial e do biodiesel, com o tempo reacional de 8h.

Tabela 3: Atribuição tentativa das bandas de absorção na região do infravermelho para o biodiesel formado com

o catalisador Al₂O₃:Eu³⁺_(0.025%) em relação ao óleo de soja comercial.

Bandas de Absorção (cm ⁻¹)	Atribuição ⁽⁹⁾	
705 – 721	(CH ₂)	
847 - 980	$(R_2C=CHR)$	
1010	(C=O)	
1161	(C(=O)-O)	
1361	(CH ₃)	
1453	(C-C)	
1614 – 1635	(C=C)	
1747	(C=O)	
2350	(C-H)	
2857	(CH ₃)	
2924	(CH)	

A banda de O-C-C dos ésteres (deformação axial da ligação carbono-oxigênio de álcoois secundários) ocorre em aproximadamente 1010 cm⁻¹. Esta região refere-se à deformação axial da ligação carbono-oxigênio de álcoois primários, o que confirma a formação do biodiesel após a reação ^(9,10).

Conclusões

O método Poliol Modificado mostrou-se adequado para a obtenção de nanopós monofásicos e cristalinos de Al₂O₃ e suas soluções sólidas dopadas com íons európio (III). A espectroscopia vibracional de absorção na região do infravermelho permitiu a análise das ligações das soluções sólidas de Al₂O₃, Al₂O₃:Eu³⁺_(0,025%), Al₂O₃:Eu³⁺_(0,050%) e Al₂O₃:Eu³⁺_(0,075%) tratados termodinamicamente a 1050 °C por 1h.

O potencial catalítico do Al₂O₃:Eu³⁺_(0,025%), na produção de biodiesel, foi investigado por espectroscopia vibracional de absorção na região do infravermelho, a qual permitiu a identificação da banda associada às ligações O-C-C, na região de 1010 cm⁻¹, características de ésteres etílicos. O catalisador sintetizado mostrou-se eficiente na transesterificação de óleo de soja, proporcionando um bom rendimento com o tempo de reação de 8 horas em temperaturas acima de 70 °C.

Referências

¹ ROCHA, S. M. R. Síntese e Caracterização de Precursores para Catalisadores Termicamente Estáveis à Base de Lantanídeos pelo Método Sol-Gel. São Paulo/SP – 2005.

² ALVES, A. K. Obtenção e Controle da Morfologia de Aluminas Sintetizadas por Sol-Gel. 2005, 104p. Dissertação (Mestre em Engenharia). Universidade Federal do Rio Grande do Sul, Porto Alegre.

³ BARBOSA, R. et al. Síntese e caracterização do espinélio Zn₇Sb₂O₁₂ dopado com terras raras. Revista Matéria,v. 10, n. 2, p. 364-369, Jun. 2005.

⁴ PECHINI, M. P.; **U.S. Patent**, No. 3.330.697 (1967).

⁵ LANFREDI, S.; CARDOSO, C. X.; NOBRE, M. A. L.; Crystallographic properties of KSr2Nb₅O₁₅, Materials Science and Engineering, 112, No. 2–3, 139–143 (2004).

⁶ Jade 8 Plus, XRD Pattern Processing, Identification & Quantification, *Materials Data, Inc.,* Copyright©, 1995-2007.

⁷ NAKAMOTO, K. Infrared and Raman spectra of inorganic and coordination compounds. New York: John Wiley & Sons, 1997.

⁸ RAM, S. Infrared spectral study of molecular vibrations in amorphous nanocrystalline and AlO(OH) . α H2O bulk crystals. Infrared Physics & Tecnology, v. 42, p. 547-560, 2001.

Analysis of the Catalytic Potential of Europium (III)-doped Aluminum Oxide in the Production of Biodiesel via Ethyl Route

M. R. Besse*, P. G. P. Moraes, M. A. L. Nobre, S. Lanfredi

Faculdade de Ciências e Tecnologia – FCT
Universidade Estadual Paulista – UNESP
Departamento de Física, Química e Biologia – DFQB
Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF
R. Roberto Simonsen 305, C.P. 467, CEP: 19060-900
Presidente Prudente – SP
*manoelabesse@terra.com.br

Abstract

This work involves the preparation and structural characterization of a catalyst (catalytic converter) based on alumina for the synthesis of Biodiesel via ethyl route. From Al₂O₃ host structure were investigated the Al₂O₃:Eu³⁺_(0,025%), Al₂O₃:Eu³⁺_(0,050%) and Al₂O₃:Eu³⁺_(0,075%) solid solutions prepared by the modified polyol method. The optimization of structural parameters for obtaining nanoparticles and nanostructured particles of Al₂O₃:Eu³⁺ was followed by X-ray diffraction and mid-infrared spectroscopy (FTIR). The structural parameters were determined from the refinements by the Rietveld method using the FULLPROF program. The nanopowders exhibited space group equal to R-3c and rhombohedral symmetry. The optimization parameters necessary for obtaining nanoparticles and nanostructured particles of Al₂O₃:Eu³⁺ was followed by X-ray diffraction, the refinement of structural parameters by Rietveld method using the program FULLPROF. The catalytic studies using Al₂O₃:Eu³⁺ nanopowders were carried out from heterogeneous catalysis with addition of nanoparticles in solution containing vegetable oil and ethanol.

Keywords: europium-doped aluminum oxide, mid-infrared spectroscopy, heterogeneous catalysis.

⁹ SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE D. J. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, 2005.

¹⁰ CARVALHO, E. G. C.; OTZ, E. P.; OLIVEIRA, L. W.; BORGES, E. P.; GONZALES, W. A. Transesterificação do óleo de soja via catalise ácida. In: 12° Congresso Brasileiro de Catálise, Angra dos Reis, 2003.