ESTUDO DA TRANSFORMAÇÃO DE FASES EM BAIXAS TEMPERATURAS DO SISTEMA Al_2O_3 - Y_2O_3 - Nb_2O_5

E. S. Lima¹; Santos, A. P. O.²; R. F. Cabral²; J. I. N. Fortini³; J. B. Campos⁴

¹ Instituto Militar de Engenharia – IME – Praça general Tibúrcio, 80 – Praia Vermelha, Rio de Janeiro – RJ CEP: 22290-270

² Centro Universitário de Volta Redonda – UniFOA –Av. Paulo Erlei Alves Abrantes, 1325 – Três Poços, Volta Redonda – RJ – Brasil – CEP 27240-560

³ Arsenal de Guerra General Câmara – AGGC – Rua General Daniel H. Balbão, s/n – General Câmara – RS CEP: 95820-000

⁴ Departamento de Engenharia Mecânica – UERJ/Centro Brasileiro de Pesquisas Físicas - Endereço: Rua São Francisco Xavier, 524 - Maracanã – CEP: 20550-013/Rua Dr. Xavier Sigaud, 150 – Urca - Rio de Janeiro – RJ – Brasil – CEP: 22290-180

<u>sousalima@ime.eb.br</u>

RESUMO

As propriedades mecânicas e de resistência à fluência do Al₂O₃ têm sido melhoradas com a utilização de outros óxidos cerâmicos. Dentre esses, destaca-se o Y₃Al₅O₁₂ (YAG - "Yttrium Aluminum Garnet"), para a obtenção do compósito Al₂O₃-YAG. O objetivo desse trabalho é realizar um estudo do efeito da adição de Nb₂O₅ na produção do compósito bifásico Al₂O₃-YAG em baixas temperaturas, partindo-se da composição eutética Al₂O₃-Y₂O₃. Nesse trabalho, foram produzidas as composições Al₂O₃-Y₂O₃ e Al₂O₃-Y₂O₃-Nb₂O₅ utilizando moagem de alta energia. Os corpos verdes foram prensadas a 70 MPa e sinterizados a 1000, 1200 e 1300°C, por 2 h. Os materiais foram caracterizados por retração, perda de massa, densidade e difração de raios-X (DRX) usando a metodologia de Rietveld. Os resultados indicaram que a perda de massa foi em torno de 3 a 4% o que mostra a estabilidade desse produto. O trabalho apresentou, ainda, grande coerência com pesquisas desenvolvidas em temperaturas mais elevadas.

Palavras chaves: Compósito Al₂O₃-YAG, Nb₂O₅, sinterização

1 INTRODUÇÃO

O YAG é um dos óxidos de maior resistência à fluência conhecido. Além disso, esse material é quimicamente estável quando em contato com o Al₂O₃, cujo coeficiente de expansão térmica é próximo e com o qual forma um eutético [1, 2, 3]. Com isso, o YAG possui características que possibilitam o seu uso em conjunto com o Al₂O₃, na função de reforço, obtendo-se o compósito Al₂O₃-YAG. Várias pesquisas indicaram propriedades mecânicas superiores deste material em temperaturas acima de 1500 °C [2, 3, 4, 5].

O diagrama de fases do sistema AI_2O_3 - Y_2O_3 (FIG. 1) [3], possui as fases YAG, YAP (YAIO₃ - "Yttrium Aluminum Perovskite") e YAM ($Y_4AI_2O_9$ -"Yttrium Aluminum Monoclinic"). Nele, as linhas cheias representam o eutético estável do compósito AI_2O_3 -YAG, a 1826°C e as pontilhadas indicam a reação eutética metaestável do compósito AI_2O_3 -YAP, em 1702°C [3].

O objetivo desse trabalho é realizar um estudo preliminar do efeito da adição de Nb_2O_5 na produção do compósito bifásico Al_2O_3 -YAG em baixas temperaturas, partindose da composição eutética Al_2O_3 - Y_2O_3 (6). Como aditivo usual do Al_2O_3 (6, 7, 8), desejase verificar o seu comportamento no sistema Al_2O_3 - Y_2O_3 .

FIG. 1: Porção rica em Al₂O₃ do sistema Al₂O₃-Y₂O₃ [3]

2 MATERIAIS E MÉTODOS

Foram produzidas duas misturas de Al₂O₃-Y₂O₃, uma de acordo com a estequiometria eutética mostrada na FIG. 1, quantificada na TAB. 1 e a outra com Nb₂O₅, conforme a TAB. 2. As misturas foram moídas por 180 min em moinho de bolas planetário Retsch, modelo PM-400, com objetivo de reduzir o tamanho de partícula, aumentar a homogeneidade da mistura, aumentar a área superficial e melhorar a afinidade química entre os seus componentes. Posteriormente, os pós foram secos em estufa Quimis, modelo Q314 M, à 120°C, por 48 h. Em seguida, as misturas foram desaglomeradas em gral e pistilo de Al₂O₃ e peneiradas. Os corpos de prova foram compactados uniaxialmente em uma matriz cilíndrica à pressão de 70 MPa, durante 1 min. As amostras

foram tratadas termicamente, ao ar, por 2 h, com taxa de aquecimento e resfriamento de 10°C/min, a 1000, 1100, 1200 e 1300° C, em um forno NETZSCH modelo 417/1.

As análises em DRX foram realizadas em difratômetro PANalytical, modelo X'Pert Pro, usando-se radiação CuK α com uma tensão de tubo de 40 kV, 40 mA e varredura com 2 θ entre 20 e 80°. O tempo de coleta foi de 5s com passo de 0,05°. Os espectros de raios-X foram refinados através do método Rietveld, com o objetivo de quantificar as fases observadas [9; 10].

Mistura Al ₂ O ₃ -Y ₂ O ₃	Mols (%)	Massa (g)	Peso (%)
Y ₂ O ₃	20,50	46,29	36,35
Al ₂ O ₃	79,50	81,06	63,65
Total	100,00	127,35	100,00

TAB. 1: Proporção estequiométrica em peso da mistura Al₂O₃-Y₂O₃

Para a determinação da perda de massa, as amostras foram pesadas em balança digital de precisão de 1,0 x 10^{-3} g. A fim de se obter a retração linear, foram medidas as dimensões do diâmetro do corpo verde e do sinterizado com um paquímetro de precisão de 2,0 x 10^{-2} mm.

Mistura Al ₂ O ₃ -Y ₂ O ₃ - Nb ₂ O ₅	Mols (%)	Massa (g)	Peso (%)
Y ₂ O ₃	20,00	46,29	34,90
Al ₂ O ₃	78,00	81,06	61,10
Nb ₂ O ₅	2,00	5,20	4,00
Total	100,00	132,55	100,00

TAB. 2: Proporção estequiométrica em peso da mistura Al₂O₃-Y₂O₃-Nb₂O₅

A densidade foi expressa por ρ_{gt} , definida como a razão entre ρ_g (densidade geométrica) e ρ_t (densidade teórica). A primeira foi calculada pela razão massa/volume

das amostras. A densidade de teórica (ρ_t), por sua vez, foi calculada pela regra das misturas (EQ. A) [9]. Os valores de densidade de cada fase (ρ_i) e seus percentuais em peso (w_i) foram extraídos, respectivamente, das fichas JCPDS (*Joint Committee on Powder Diffraction Standards*) e dos difratogramas das amostras analisadas por Rietveld.

$$\rho_t = \frac{1}{\sum_{i} \frac{W_i}{\rho_i}} \tag{A}$$

onde: i é a i-ésima fase, e

wi, o percentual em peso da fase i

3 RESULTADOS E DISCUSSÕES

A TAB. 3 apresenta a quantificação de fases oriunda do método de Rietveld da mistura AI_2O_3 - Y_2O_3 tratada termicamente a 1000, 1100, 1200 e 1300°C. Nessa tabela observa-se a formação das fases YAM, YAP e YAG.

TAB. 3: Quantificação de fases (em peso) pelo método de Rietveld da mistura Al₂O₃-

 Y_2O_3

Tratamento térmico (°C)/Fases	Al ₂ O ₃	Y ₂ O ₃	YAM	YAP	YAG
1000	61,60	7,63	30,77	0,00	0,00
1100	51,60	2,48	5,32	40,60	0,00
1200	43,50	0,33	1,05	26,09	29,03
1300	52,99	3,18	11,95	31,84	0,03

A 1000°C houve a formação de 30,77% em peso de YAM, com o consumo de Al_2O_3 e Y_2O_3 . Ambas as fases tiveram sua quantidade em peso reduzidas de 63,65 e 36,35%, respectivamente, como consta da Tabela 1, para 61,60 e 7,63%.

A 1100°C, o YAM apresentou uma redução em peso para 5,32% e observou-se a formação de YAP, com uma quantificação de 40,60%. As fases AI_2O_3 e Y_2O_3 apresentaram uma redução em peso ainda maior, com 51,60 e 2,48%.

A 1200°C pode-se observar a redução de YAM e de YAP para 1,05% e 26,09% em peso, com a formação de 29,03% de YAG. As fases AI_2O_3 e Y_2O_3 continuaram apresentando redução em peso, com 43,50% e 0,33%.

Esses resultados estão de acordo com as pesquisas de WON *et al* [11], NEIMAN *et al* [12] e WEN *et al* [13], onde o aquecimento dessa mistura apresentou a formação das fases intermediárias YAM em 1000°C e YAP em 1100°C, respectivamente. A formação majoritária para o sistema Al₂O₃-Y₂O₃ é de YAG [14; 15; 16] e segundo WON *et al* [11] ocorre em torno de 1300°C. A sua presença à 1200°C indica que as condições de processamento da mistura foram extremamente favoráveis. Nos trabalhos de CABRAL *et al* [7], CABRAL *et al* [8], LIMA *et al* [14], CABRAL *et al* [15] também foi constatada a presença de YAG em temperaturas semelhantes.

Porém, na amostra tratada a 1300°C, ocorreu a formação majoritária de YAP, com um percentual em peso de YAG muito pequeno, contrariando a tendência de aumento de YAG para esta temperatura [13, 16]. Provavelmente, houve algum problema nas condições de tratamento térmico desta amostra, como um mau funcionamento do forno ou uma queda de energia. A quantificação das fases YAM, YAP e YAG está resumida na FIG. 2.

A TAB. 4 e a FIG. 3 apresentam a quantificação de fases oriunda do método de Rietveld da mistura AI_2O_3 - Y_2O_3 - Nb_2O_5 tratada termicamente à 1000, 1100, 1200 e 1300°C. Observa-se, além da formação das fases YAM, YAP e YAG, já verificadas anteriormente na TAB. 3 e na FIG. 2 da mistura AI_2O_3 - Y_2O_3 , a formação da fase YNbO₄.

Na composição tratada a 1000°C, houve a formação de 13,42 % em peso de YAM e um elevado valor da fase YNbO₄ preferencialmente em relação ao AlNbO₄ [12, 13], fase presente em misturas de AI_2O_3 e Nb₂O₅ tratadas acima de 1200°C [7]. Isto provavelmente ocorreu devido o ítrio (Y) ser mais ávido pelo alumínio (AI) do que pelo nióbio (Nb) [7; 8; 15].

FIG. 2: Quantificação de fases pelo método de Rietveld da mistura Al₂O₃-Y₂O₃

TAB. 4: Quantificação de fases (em peso) pelo método de Rietveld da mistura AI_2O_3 - Y_2O_3 -Nb₂O₅

Tratamento térmico (°C)/Fases	Al ₂ O ₃	Y ₂ O ₃	Nb ₂ O ₅	YNbO4	YAM	YAP	YAG
1000	61,10	7,70	0,76	17,02	13,42	0,00	0,00
1100	54,02	2,92	0,72	12,46	2,47	27,41	0,00
1200	46,22	2,07	0,00	5,10	1,99	33,84	10,79
1300	53,66	10,15	0,00	1,49	11,40	22,46	0,85

A 1100°C, o YAM apresentou uma redução em peso para 13,42% e o YNbO₄ para 12,46%. Por outro lado, houve um significativo aumento em peso de YAP, que apresentou 27,41% devido ao aumento de temperatura [11, 12, 13].

FIG. 3: Quantificação de fases pelo método de Rietveld da mistura Al₂O₃-Y₂O₃-Nb₂O₅

A 1200°C pode-se observar a redução de YAM e aumento de YAP para 1,99% e 33,84% em peso, respectivamente, com a formação de 10,79% de YAG. Essas formações mais uma vez estão de acordo com pesquisas anteriores de WON *et al* [11], NEIMAN *et al* [12] e WEN *et al* [13] onde o aquecimento dessa mistura a partir de 1000°C resulta na formação da fase intermediária, YAP, em 1100°C. As fases AI_2O_3 e Y_2O_3 apresentaram redução em peso, com 46,22% e 2,07%, respectivamente.

Na temperatura a 1300°C, a fase intermediária YAP foi a majoritária, com 22,46% e a fase estável YAG apresentou valor muito baixo. Esse resultado, da mesma forma como ocorreu para a mistura Al₂O₃-Y₂O₃, não é coerente para essa temperatura [11, 12, 13]. Mais uma vez esse fato indica algum problema experimental.

A FIG. 4 apresenta a perda de massa das misturas Al₂O₃-Y₂O₃ e Al₂O₃-Y₂O₃-Nb₂O₅ tratadas termicamente nas temperaturas de 1000, 1100, 1200 e 1300°C. A perda de massa foi praticamente constante, com valores médios entre 3 e 4%, provavelmente originada da volatilização de impurezas dos pós reagentes iniciais. Estes resultados corroboram o trabalho de CABRAL [15], no qual foi verificada baixa variação do percentual em peso, em função do aumento de temperatura de tratamento térmico.

857

FIG. 4: Perda de massa das amostras de Al₂O₃-Y₂O₃ e Al₂O₃-Y₂O₃-Nb₂O₅ tratadas termicamente

O gráfico da FIG. 5 apresentada a retração linear do diâmetro das amostras AI_2O_3 -Y₂O₃ e AI_2O_3 -Y₂O₃-Nb₂O₅ tratadas termicamente. É possível verificar uma pequena tendência de aumento da retração linear com aumento de temperatura até 1200°C nas duas composições, principalmente naquela sem aditivo.

Considerando-se ambas as misturas, a máxima retração do diâmetro observada foi pequena, abaixo de 2,5%. Segundo GERMAN [17] os modelos para o estágio inicial de sinterização, em baixas temperaturas, não permitem uma completa sinterização, mas apenas o seu início, onde não há ainda a formação de grãos, somente a formação de partículas. É provável que as temperaturas de tratamento térmico utilizadas estejam situadas na faixa de temperaturas correspondente a esse estágio, para esse material [16, 17].

Os valores de retração, embora baixos, estão coerentes para as temperaturas estudadas, uma vez que a completa sinterização dessas misturas ocorre somente em temperaturas superiores a 1600°C [11, 12, 13].

A 1300°C ocorre uma redução da retração, o que pode ser explicado pelos problemas experimentais relatados pelas análises das TAB. 3 e 4 e FIG. 2 e 3, nessa condição.

FIG. 5: Retração do diâmetro das amostras Al₂O₃-Y₂O₃ e Al₂O₃-Y₂O₃-Nb₂O₅ tratadas termicamente

4 CONCLUSÕES

Essa pesquisa apresentou a transformação de fases em baixas temperaturas do sistema AI_2O_3 - Y_2O_3 - Nb_2O_5 , bem como do sistema AI_2O_3 - Y_2O_3 , por meio da metodologia de Rietveld. As fases formadas para o sistema AI_2O_3 - Y_2O_3 foram aquelas previstas pela literatura, YAM, YAP e YAG

O Nb₂O₅ foi adicionado à mistura com o objetivo de realizar um estudo preliminar do efeito de sua adição na produção do compósito bifásico Al₂O₃-YAG em baixas temperaturas. Foi verificada a presença da fase niobato de ítrio (YNbO₄) na menor temperatura pesquisada, 1000°C Essa formação ocorreu em detrimento do niobato de alumínio (AlNbO₄), presente quando há somente Al₂O₃ e Nb₂O₅.

Problemas experimentais não permitiram realizar o estudo da transformação de fases na temperatura de 1300°C, muito embora tenha sido possível extrair claras informações a partir das demais.

A perda de massa, entre 3 e 4% para ambas as misturas, indicou a volatilização de impurezas dos pós reagentes iniciais, ao menos na faixa de temperaturas estudadas.

Os valores de retração linear e de densificação foram compatíveis com as temperaturas utilizadas, uma vez que a sinterização do compósito Al₂O₃-Y₂O₃ ocorre somente em temperaturas acima de 1600°C.

O YAG surgiu como fase majoritária na temperatura de 1200°C, cerca de 100°C abaixo do que seria esperado. Esse resultado demonstrou que os pós utilizados possuem características extremamente favoráveis, tais como alta sinterabilidade e excelente homogeneização, para a formação do compósito.

Novos estudos estão em curso e indicarão a evolução do sistema Al₂O₃-Y₂O₃ em temperaturas mais elevadas, bem como se os pós produzidos, além da adição de Nb₂O₅, proporcionarão condições favoráveis para a sinterização do compósito bifásico Al₂O₃-YAG

5 **BIBLIOGRAFIA**

[1] MIZUTANI, Y., MAEDA, OHNAKA, N. I., WAKU, Y., YASUDA, H. Coupled Growth of Unidirectionally Solidified Al₂O₃–YAG Eutectic Ceramics, *Journal of Crystal Growth*, v. 244, pp. 244-384, 2002.

[2] LI, W. Q., GAO, L., Processing, Microstructure and Mechanical Properties of 25 vol% YAG-Al₂O₃ Nanocomposites, *NanoStructured Materials*, v. 11, pp. 1073-1080, 1999.

[3] PARTHASARATHY, T. A., MAH, T., MATSON, L. E., Processing, Structure and Properties of Alumina-YAG Eutectic Composites, *Journal of Ceramic Processing Research*, v. 5, pp. 380-390, 2004.

[4] WAKU, Y., NAKAGAWA, N., WAKAMOTO, OTSUBO, T., H., SHIMIZU, K., KOHTOKU, Y., High Temperature Strength and Thermal Stability of Unidirectionally Solidified Al₂O₃/YAG Eutectic Composite, *Journal of Materials Science*, v. 33, pp. 1217-1225, 1998.

[5] WANG, H., GAO, L., Preparation and Microstructure of Polycrystalline Al₂O₃– YAG Composites, *Ceramics International*, v. 27, pp. 721-723, 2001.

[6] CABRAL, R.F; PRADO DA SILVA; M. H.; CAMPOS, J. B.; LIMA, E. S., Study of the sintering of mixtures $Al_2O_3-Nb_2O_5$ and $Y_2O_3-Nb_2O_5$, v. 727-728, pp. 799-803, 2012.

[7] CABRAL, R. F., PRADO da SILVA, M. H., LOURO, L. H. L., CAMPOS, J. B., COSTA, C. R. C, LIMA, E. S., Processamento e caracterização morfológica do compósito Al₂O₃-YAG aditivado com nióbia, *Revista Cerâmica*, v. 56, pp. 129-134, 2010.

[8] CABRAL, R. F., LOURO, L. H. L., PRADO da SILVA, M. H., CAMPOS, J. B., LIMA, E. S., Síntese e caracterização do compósito Al₂O₃-YAG e do Al₂O₃-YAG e Al₂O₃ aditivados com Nb₂O₅, *Revista Cerâmica*, v. 58, pp. 14-19, 2012.

[9] HARADA, Y., UEKAWA N., KOJIMA, T., KAKEGAWA, K., Formation of Y₃Al₅O₁₂ – Al₂O₃ eutectic microstuture with off-eutectic composition, *Journal of European Ceramic Society*, v. 28, pp. 1973-1978, 2008.

[10] ORTIZ, A. L., SÁNCHEZ-BAJO, F., PADTURE, N. P., CUMBRERA, F. L., GUIBERTEAU, F., Quantitative Polytype-Composition Analyses of SiC Using X-Ray Diffraction: a Critical Comparison Between the Polymorphic and the Rietveld Methods, *Journal of the European Ceramic Society*, v. 21, pp. 1237-1248, 2001.

[11] WON, C. W., NERSISYAN, H. H., WON, H. I., Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles, *Journal of Alloyos and Compounds*, v. 509, pp. 2621-2626, 2011.

[12] NEIMAN, A. Y., TKACHENKO, E. V., Conditions and Macromechanism of the Solid-phase Synthesis of Yttrium Aluminates, *Russian Journal of Inorganic Chemistry*, v. 25, n. 9, p. 2340-2345, 1980.

[13] WEN, L., SUN, X., XIU, Z., et al, Synthesis of Nanocrystalline Yttria Powder and Fabrication of Transparent YAG Ceramics, Journal of the European Ceramic Society, v. 24, p. 2681-88, 2004.

[14] LIMA, E. S., COSTA, C. R. C., LOURO, L. H. L., CAMPOS, J. B. COSTA, C. A., Microstructure of Al₂O₃/YAG Eutectic Composite, *Brazilian Journal of Morphological Sciences*, pp. 316, 2005.

[15] Cabral, R. F. sinterização do compósito Al₂O₃-YAG com aditivação do Nb₂O₅, Revista Militar de Ciência e tecnologia, p. 3-9, 2012.

[16] BARSOUM, M. W., *Fundamentals of Ceramics*, 1^a Ed., Texas, USA, The Mc Graw-Hill Companies Inc., 1997.

[17] GERMAN, R. M., *Sintering Theory and Practice*, 1^a Ed., New York, John Wiley & Sons, 1996.

STUDY OF LOW TEMPERATURE TRANSFORMATION SUSTEM PHASES OF Al_2O_3- $Y_2O_3\text{-}Nb_2O_5$

ABSTRACT

The mechanical properties and creep resistance of AI_2O_3 have been improved with the use of other ceramic oxides. Among these, we highlight the $Y_3AI_5O_{12}$ (YAG - "Yttrium Aluminum Garnet"), to obtain the composite AI_2O_3 -YAG. The aim of this work is to study the effect of addition of Nb_2O_5 in the production of composite biphasic AI_2O_3 -YAG at low temperatures, starting from the eutectic composition AI_2O_3 -Y₂O₃. In this work, the compositions were produced AI_2O_3 -Y₂O₃ and AI_2O_3 -Y₂O₃-Nb₂O₅ using high energy milling. The green bodies were pressed at 70 MPa and sintered at 1000, 1100, 1200 and 1300 °C for 2 h. The materials were characterized by shrinkage, weight loss, density and X-ray diffraction (XRD) using the Rietveld method. The results indicated that the weight loss was approximately 3 to 4% which shows the stability of the product. The work presented also congruent with research carried out at higher temperatures.

Keywords: Al₂O₃-YAG composite, Nb₂O₅, sintering.