EFEITO DA TEMPERATURA E DO TEMPO DE SINTERIZAÇÃO NA COMPOSIÇÃO DE FASES E NA CONDUTIVIDADE ELÉTRICA DA ZIRCÔNIA-ESCÂNDIA-CÉRIA

R. L. Grosso*; E. N. S. Muccillo Centro de Ciência e Tecnologia de Materiais, CCTM Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP Av. Prof. Lineu Prestes 2242, Cidade Universitária, São Paulo, 05508-000, SP Brasil *roblopeg@gmail.com

RESUMO

Eletrólitos sólidos à base de ZrO₂ têm sido extensivamente estudados por muitos anos para aplicações em células a combustível de óxido sólido (SOFC). O eletrólito sólido zircônia contendo escândia e céria apresenta-se promissor para aplicações em SOFC para temperaturas intermediárias (600 a 800 °C) de operação. Neste trabalho, o ZrO₂ contendo 10% em mol de Sc₂O₃ e 1% em mol de CeO₂ comercial foi sinterizado pelos métodos convencional e de duas etapas. Diferentes condições de sinterização foram analisadas variando a temperatura e o tempo de patamar. Elevados valores de densidade relativa, maiores que 98%, foram obtidos. Resultados de difração de raios X mostram que é necessária uma seleção cuidadosa das condições de sinterização para obtenção da fase cúbica. O crescimento de grãos é limitado nas amostras preparadas pelo método de duas etapas. Amostras selecionadas foram analisadas por medidas da condutividade elétrica por espectroscopia de impedância.

Palavras-chave: zircônia-escândia, sinterização, condutividade elétrica.

INTRODUÇÃO

Eletrólitos sólidos à base de ZrO₂ têm sido extensivamente estudados por muitos anos para aplicações em células a combustível de óxido sólido (SOFC). Dentre todos os condutores de íons oxigênio conhecidos, a zircônia estabilizada com ítria (YSZ) é o mais estudado e, em geral, sua condutividade iônica é considerada como padrão no estudo de novos materiais condutores. Entretanto, em materiais à base de zircônia, a maior condutividade elétrica é encontrada na zircônia estabilizada com escândia (ScSZ).

Uma das principais desvantagens da zircônia-escândia para este tipo de aplicação é sua relativa baixa estabilidade de fase ⁽¹⁾. A fase cúbica do ScSZ, a qual apresenta maior condutividade elétrica, foi obtida apenas em condições muito específicas.

Com a finalidade de melhorar a estabilidade de fases da zircônia-escândia, diferentes adições de óxidos metálicos têm sido propostas, como: CeO₂ ⁽²⁾, Y₂O₃ ⁽³⁾, Al₂O₃ ⁽⁴⁾, HfO₂ ⁽²⁾, Ga₂O₃ ⁽²⁾, sendo que a adição de céria tem apresentado resultados mais interessantes. Embora a adição de CeO₂ promova uma diminuição da condutividade iônica do ScSZ, a condutividade da zircônia-escândia-céria (ScCeSZ) apresenta-se superior à do YSZ em temperaturas intermediárias (600 a 800 °C). Além disso, alguns trabalhos demonstraram que a adição de céria à zircônia-escândia promove a estabilização da fase cúbica numa ampla faixa de temperatura ^(2,5-9).

Diversos autores tem demonstrado que o ScCeSZ apresenta-se promissor para aplicações em SOFC para temperaturas intermediárias de operação ^(2,5-9). Lee e colaboradores ⁽⁶⁾ mostraram que a condutividade iônica do ScCeSZ apresenta excelente estabilidade a 800 °C num período de tempo superior a 600 h. Estudos de envelhecimento térmico realizados a 600 °C no ScCeSZ ⁽⁷⁾ demonstraram que a degradação da condutividade em atmosfera de ar é de aproximadamente 6% somente após 3000 h, enquanto que, em atmosfera redutora, chega a 20%. Esse comportamento foi atribuído à redução de cátions Ce⁴⁺ para Ce^{3+ (7)}.

Alguns trabalhos que correlacionam sinterização e condutividade elétrica demonstraram que a adição de agentes de sinterização, como Li₂CO₃ e Bi₂O₃, pode diminuir a temperatura de sinterização do ScCeSZ em torno de 200 °C sem alteração significativa das propriedade elétricas ^(5,9). Entretanto, o uso de agentes de sinterização pode provocar efeitos indesejados, tais como: formação de fases secundárias, segregação do aditivo nos contornos de grão e microtrincas, influenciando fortemente as propriedades do material.

Recentemente foi proposta na literatura uma nova abordagem para a sinterização, na qual o aquecimento é realizado em forno convencional, mas o processo é dividido em duas etapas ⁽¹⁰⁾. A sinterização em duas etapas, proposta em 2000 por Chen e Wang ⁽¹⁰⁾, tem como premissa a obtenção de cerâmicas densas e com tamanho de grãos reduzidos, porque suprime o crescimento de grãos que ocorre no estágio final de sinterização.

1505

Este método se baseia na densificação sem crescimento de grão no estágio final de sinterização. Assim, a amostra é inicialmente conduzida a uma alta temperatura por tempo quase nulo, sendo em seguida resfriada rapidamente até uma temperatura inferior na qual permanece por um tempo específico. Segundo os autores, a eficácia da densificação neste caso se deve à supressão da migração dos contornos de grão (responsável pelo crescimento dos grãos) ao mesmo tempo em que é mantida a difusão via contornos de grão (responsável pela eliminação da porosidade). Para que o processo seja otimizado, os autores mostraram que uma densidade relativa em torno de 75% deve ser obtida na primeira etapa de sinterização.

Posteriormente, alguns trabalhos foram publicados utilizando a sinterização em duas etapas em diversos materiais apresentando elevados valores de densidade com tamanho de grãos reduzidos ^(11,12).

Neste trabalho, avaliou-se o efeito da sinterização convencional e em duas etapas na densificação, estabilidade de fase e tamanho médio de grãos da zircônia-escândia-céria comercial visando à obtenção de cerâmicas densas em temperaturas relativamente baixas e levando em consideração a condutividade elétrica.

MATERIAIS E MÉTODOS

Como material de partida foi utilizada a zircônia-escândia-céria comercial (*Fuel Cell Materials*). De acordo com as informações fornecidas pelo fabricante este material possui 10% em mol de Sc_2O_3 e 1% em mol de CeO_2 , área de superfície específica igual a 11,5 m².g⁻¹ e 99,98% de pureza. Este material foi utilizado como recebido.

Amostras cilíndricas de 3 mm de espessura foram conformadas por prensagem uniaxial em matriz de aço inoxidável de diâmetro igual a 10 mm, por meio da aplicação de pressão igual a 45 MPa. Em seguida, foi feita compactação isostática a frio a 100 MPa. Após compactação, as amostras foram sinterizadas ao ar, em duplicata, em diferentes condições de temperatura e tempo de patamar, em forno resistivo tipo caixa (Lindberg, 51524).

Para o estudo de sinterização em duas etapas, amostras foram sinterizadas em diferentes temperaturas T_1 e T_2 e diversos tempos t_2 , com taxa de aquecimento igual a 10 °C/min.

A caracterização estrutural do material foi feita por difração de raios X (Bruker-AXS, D8 Advance) utilizando a radiação K_{α} do Cu (λ = 1,5405 Å) e filtro de Ni, na faixa angular de 2 θ entre 20 e 80°. A identificação dos picos de difração foi feita com auxílio das fichas JCPDS 89-5483 e 51-1604 da zircônia-escândia para as fases cúbica e romboédrica, respectivamente.

A densidade aparente das amostras sinterizadas foi determinada por meio dos métodos geométrico e de imersão em água, utilizando o princípio de Arquimedes, e comparada com a densidade teórica do ScCeSZ.

O tamanho médio de grãos (*G*) foi determinado pelo método dos interceptos, numa amostragem superior a 500 grãos, de micrografias de amostras segmentadas, polidas e atacadas termicamente, obtidas por microscópio eletrônico de varredura (Philips, XL30).

A condutividade elétrica foi determinada por meio da técnica de espectroscopia de impedância. As medidas foram realizadas no intervalo de frequência de 5 Hz a 13 MHz com uma tensão aplicada de 100 mV, utilizando um analisador de impedância HP 4192A. Para as medidas elétricas realizou-se a deposição dos eletrodos em faces opostas das amostras com aplicação de tinta de prata (Cerdec) seguida de cura da resina a 400 °C. Os dados das medidas elétricas foram coletados e analisados por meio de programa computacional ⁽¹³⁾.

RESULTADOS E DISCUSSÃO

Inicialmente foi realizada a caracterização estrutural do material como recebido por difração de raios X. A partir do difratograma de raios X do pó, mostrado na Figura 1, foi identificada uma única fase cúbica de face centrada (grupo espacial *Fm3m*) por comparação com a ficha JCPDS n° 89-5483 com parâmetro de rede a = 5,090 Å, o qual é similar ao reportado na literatura ⁽⁸⁾. Este resultado confirma que a introdução de cério na zircônia-escândia possibilita obter um pó com fase única cúbica à temperatura ambiente.

Diversas condições de sinterização convencional foram realizadas com o objetivo de verificar faixas de temperatura e tempo adequados para a realização da sinterização em duas etapas, bem como, servir de método comparativo. 56º Congresso Brasileiro de Cerâmica 1º Congresso Latino-Americano de Cerâmica IX Brazilian Symposium on Glass and Related Materials 03 a 06 de junho de 2012, Curitiba, PR, Brasil

Figura 1. Difratograma de raios X do pó de ScCeSZ como recebido.

A Figura 2 mostra o comportamento da densidade relativa, obtida pelo método geométrico de amostras sinterizadas em tempo de patamar nulo, em função da temperatura. O aumento da temperatura promoveu o aumento da densidade relativa, como esperado. Para temperaturas superiores a 1250 °C há diminuição na taxa de densificação, ou seja, a densidade aumenta mais lentamente com a temperatura.

Figura 2. Curva de densidade relativa em função da temperatura de amostras sinterizadas em tempo de patamar nulo.

No entanto, após sinterização das amostras entre 1150 e 1300 °C, em tempo de patamar nulo, ocorreu a formação de uma fase secundária, a qual é evidenciada nos difratogramas de raios X na Figura 3. Os picos nos difratogramas com a marcação (β) são atribuídos à fase romboédrica ⁽¹⁾.

A sinterização a 1200 °C promoveu a maior quantidade de fase β , como pode ser evidenciado pelos picos em destaque na Figura 3b. O aumento da temperatura de sinterização promoveu a predominância de uma estrutura cúbica com pequena quantidade da fase secundária. Apenas a partir de 1350 °C, o material apresentouse cúbico monofásico. Esse comportamento, reportado para o ScCeSZ desenvolvido pela empresa DKKK ⁽¹⁴⁾ também foi observado na zircônia-escândia contendo 1% em mol de alumina ⁽⁴⁾.

Figura 3. Difratogramas de raios X de amostras de ScCeSZ sinterizadas a várias temperaturas por tempo de patamar nulo na faixa de 2θ entre (a) 20 e 80° e (b) 48 e 53°.

Para uma análise mais detalhada da densificação do material em função do tempo, várias condições de sinterização pelo método convencional foram estudadas. A Tabela I lista os valores de densidade relativa, determinada pelo método da imersão, tamanho médio de grãos, determinados pelo método dos interceptos, e a estrutura cristalina encontrada por difração de raios X de amostras sinterizadas pelo método convencional. A intensidade (forte ou fraca) de fase secundária (β) é indicada para cada condição de sinterização estudada.

A densificação do ScCeSZ torna-se efetiva a partir de 1150 °C. Para temperaturas inferiores a 1150 °C é necessário tempo de patamar muito extenso (cerca de 10 h) para se atingir uma densidade relativa próxima de 90%. O aumento da temperatura promoveu a diminuição gradual da fase secundária β e a predominância da fase cúbica. Considerando o tempo de patamar de 2 h, nenhum pico referente à fase romboédrica foi identificado somente para temperaturas igual ou superior a 1200 °C.

Em relação ao tamanho médio de grãos, o aumento da temperatura e do tempo promoveu o aumento exponencial, como esperado. A 1070 °C, o aumento do tempo de 10 para 15 h de patamar, apresentou pouca influência no aumento dos grãos. Porém, a quantidade de fase β encontrada foi muito significativa. De outro modo, a 1200 °C, o aumento do tempo favoreceu o crescimento de grãos e promoveu a efetiva densificação do material.

Tabela I. Valores de densidade hidrostática relativa (ρ_H), tamanho médio de grãos (*G*) e estrutura cristalina de amostras de ScCeSZ sinterizadas pelo método convencional.

T (°C)	Tempo (h)	<i>ρ</i> _н (%)	G (μm)	Estrutura
1070	10	$89,9 \pm 0,3$	$0,30 \pm 0,03$	$c + \beta_{Forte}$
	15	$92,7 \pm 0,3$	$0,32 \pm 0,05$	$c + \beta_{Forte}$
1150	0	$60,4 \pm 0,3^*$	-	$c + \beta_{Forte}$
	0,2	$76,8 \pm 0,7^*$	-	$c + \beta$ Forte
	0,5	82,5 ± 0,5*	-	$c + \beta$ Forte
	2	$91,6 \pm 0,5$	-	$c + \beta$ Forte
1200	0	75,0 ± 0,3*	~ 0,1**	$c + \beta$ _{Fraca}
	0,2	$90,4 \pm 0,3$	$0,32 \pm 0,05$	$c + \beta$ Fraca
	0,5	$96,6 \pm 0,3$	$0,53 \pm 0,06$	$c + \beta$ Fraca
	0,7	$96,7 \pm 0,3$	$0,54 \pm 0,09$	$c + \beta_{Fraca}$
	2	$99,9 \pm 0,5$	0,67 ± 0,12	$c + \beta_{Fraca}$
	5	$99,9 \pm 0,3$	0,70 ± 0,13	С
	15	$99,7 \pm 0,5$	$1,42 \pm 0,22$	С
1250	0	$85,4 \pm 0,4$	$0,36 \pm 0,05$	$c + \beta_{Fraca}$
	1	$98,4 \pm 0,3$	$0,73 \pm 0,14$	С
1300	0	$93,2 \pm 0,8$	$0,52 \pm 0,08$	$c + \beta$ Fraca
1350	0	$97,8 \pm 0,3$	0,91 ± 0,17	С
1400	0	$99,5 \pm 0,2$	1,51 ± 0,29	С
	1	$99,3 \pm 0,5$	$2,28 \pm 0,40$	С
1500	10	$99,9 \pm 0,4$	$4,94 \pm 0,86$	$c + \beta$ _{Fraca}

* Densidade geométrica relativa.

** Valor estimado pela micrografia da superfície de fratura.

 $c = cúbica, \beta = romboédrica.$

Os resultados de difração de raios X mostram, de forma geral, que é necessária uma seleção cuidadosa das condições de sinterização para obtenção do material cúbico monofásico.

Os valores de tamanho médio de grãos encontrados para o material da *Fuel Cell Materials* estão de acordo com os resultados reportados para o ScCeSZ preparado por mistura de óxidos ⁽⁷⁾ e produzido pela empresa DKKK ⁽⁶⁾.

De acordo com os trabalhos pioneiros de sinterização em duas etapas, a temperatura de pico deve ser selecionada de acordo com uma densidade relativa em torno de 75% da densidade teórica para materiais que sinterizam por meio de reações em estado sólido ⁽¹⁰⁾. Dessa forma, para a cerâmica de ScCeSZ, a princípio, foi utilizada T₁ igual a 1200 °C. No entanto, nessas condições, o ScCeSZ apresentou quantidade significativa de fase romboédrica (Figura 3). Dessa forma, para análise da influência de T₁ no processo de sinterização, principalmente, em relação à estrutura cristalina, avaliou-se também T₁ igual a 1250, 1300, 1350 e 1400 °C.

Dessa forma, diversos experimentos de sinterização em duas etapas foram realizados, variando a temperatura de pico (T_1), T_2 e tempo de patamar (t_2).

Os valores de densidade hidrostática e a estrutura cristalina encontrada para cada condição estudada são listados na Tabela II. O tamanho médio de grãos de algumas amostras também é apresentado. Para T₁ igual a 1200 °C, o aumento de T₂ (para t₂ = 5 h) permite aumentar a densidade relativa de 77 para 90%. A completa densificação do material foi alcançada utilizando T₁ maior que 1200 °C ou aumentando t₂ (> 5 h).

É importante ressaltar que para T_1 menor que 1350 °C as amostras mesmo densas apresentam composição de fase (cúbica + romboédrica), exceto na condição T_1 igual a 1300 °C seguido de T_2 igual a 1200 °C por 5 h.

O efeito do tempo (t₂) no tamanho médio de grãos depende da temperatura T₂. Assim, por exemplo, quando T₂ igual a 1350 °C o aumento de t₂ (5, 10 e 15 h) revela que não há variação significativa no tamanho médio de grãos. Este resultado está de acordo com a premissa da técnica de sinterização em duas etapas onde ocorre densificação sem crescimento de grão no segundo estágio de sinterização. Entretanto, quando T₂ igual a 1100 °C, *G* aumenta de ~0,3 para ~0,45 µm com o aumento de t₂. Este resultado também está de acordo com o método de sinterização proposto por Wang ⁽¹⁰⁾, onde há uma região específica, denominada janela cinética (*kinetic window*), na qual não ocorre o crescimento de grão, mas fora desta faixa pode ocorrer o crescimento de grãos ou não acontecer a densificação.

56º Congresso Brasileiro de Cerâmica 1º Congresso Latino-Americano de Cerâmica IX Brazilian Symposium on Glass and Related Materials 03 a 06 de junho de 2012, Curitiba, PR, Brasil

Quando T₁ é igual ou superior a 1350 °C, independentemente de T₂ e t₂, a estrutura cristalina resultante é sempre cúbica. Nesta situação, a tamanho médio de grãos aumenta tanto com a temperatura (T₂) quanto com o tempo (t₂).

T₁ (°C)	T ₂ (°C)	t ₂ (h)	ρ _Η (%)	G (μm)	Estrutura
1200	1000	5	76,7 ± 0,25*	-	$c + \beta_{Forte}$
	1050	5	82,1 ± 0,42*	-	$c + \beta$ Forte
	1070	5	88,3 ± 0,47	$0,24 \pm 0,03$	$c + \beta_{Forte}$
	1100	5	89,7 ± 0,49	$0,29 \pm 0,04$	$c + \beta_{Forte}$
1200	1070	10	99,0 ± 0,23	$0,25 \pm 0,05$	$c + \beta_{Forte}$
	1100	10	98,0 ± 0,21	$0,35 \pm 0,05$	$c + \beta_{Forte}$
1200	1070	15	98,4 ± 0,31	$0,28 \pm 0,05$	$c + \beta_{Forte}$
	1100	15	99,9 ± 0,39	$0,44 \pm 0,12$	$c + \beta_{Forte}$
1250	1070	15	98,3 ± 0,44	-	$c + \beta$ Forte
	1100	15	$94,0 \pm 0,30$	-	$c + \beta$ Forte
1300	1100	5	$99,4 \pm 0,19$	-	$c + \beta_{Fraca}$
	1200	5	$99,9 \pm 0,53$	$0,79 \pm 0,17$	С
1300	1070	10	98,6 ± 0,18	-	$c + \beta_{Fraca}$
	1100	10	95,0 ± 0,35	-	$c + \beta_{Fraca}$
1300	1100	15	97,8 ± 0,20	-	$c + \beta_{Fraca}$
1350	1200	2	99,9 ± 0,24	$0,74 \pm 0,14$	С
1350	1200	5	99,9 ± 0,82	$0,99 \pm 0,17$	С
1400	1200	2	99,9 ± 0,22	$1,27 \pm 0,23$	С
1400	1100	5	99,3 ± 0,27	$1,12 \pm 0,14$	С
	1200	5	99,9 ± 0,27	$1,08 \pm 0,19$	С
1400	1100	10	98,6 ± 0,23	-	С

Tabela II. Valores de densidade hidrostática relativa (ρ_H), tamanho médio de grãos (*G*) e estrutura cristalina de amostras de ScCeSZ sinterizadas em duas etapas.

* Densidade geométrica relativa.

 $c = cúbica, \beta = romboédrica.$

A Figura 4 mostra as curvas de tamanho médio de grãos em função da densidade relativa para amostras sinterizadas pelo método convencional (símbolo cheio), em tempo de patamar nulo, e para algumas condições em duas etapas (símbolo vazio). Conforme apresentado anteriormente na Tabela I (sinterização convencional), a completa densificação é alcançada a 1400 °C, onde *G* é igual a 1,51 µm. Contudo, pode-se observar que por meio da sinterização em duas etapas é possível suprimir ao menos parcialmente o crescimento de grãos.

56º Congresso Brasileiro de Cerâmica 1º Congresso Latino-Americano de Cerâmica IX Brazilian Symposium on Glass and Related Materials 03 a 06 de junho de 2012, Curitiba, PR, Brasil

Figura 4. Tamanho médio de grãos em função da densidade hidrostática relativa de amostras sinterizadas pelos métodos convencional e de duas etapas.

A Figura 5 mostra o gráfico de Arrhenius da condutividade elétrica do grão para diversas amostras sinterizadas pelos métodos convencional e de duas etapas. Observa-se que todas as amostras apresentaram o mesmo comportamento: uma única inclinação no intervalo de temperatura de 300 a 450 °C. No entanto, as amostras sinterizadas a 1200 °C por 0,5 h e 1300 °C por 0 h apresentaram condutividade ligeiramente inferior. Esse comportamento é atribuído à fase secundária romboédrica. Os valores de condutividade elétrica de amostras cúbicas monofásicas de ScCeSZ estão de acordo com os valores reportados na literatura (2,5,7-9).

Figura 5. Gráficos de Arrhenius para a condutividade elétrica do grão de amostras de ScCeSZ sinterizadas em diferentes condições.

CONCLUSÃO

A temperatura e o tempo de sinterização apresentam forte influência na estabilização da fase cúbica na zircônia-escândia-céria.

O método de sinterização em duas etapas, para o ScCeSZ comercial, mostrou-se eficaz em relação à supressão ao menos parcial do crescimento de grãos. No entanto, para a obtenção da cerâmica monofásica, a temperatura de pico deve ser substancialmente elevada.

AGRADECIMENTOS

À CAPES pela bolsa de mestrado, à FAPESP, CNPq e IPEN pelo apoio financeiro.

REFERÊNCIAS

- ⁽¹⁾ FUJIMORI, H.; YASHIMA, M.; KAKIHANA, M.; YOSHIMURA, M. Structural changes of scandia-doped zirconia solid solutions: Rietveld analysis and Raman scattering. **Journal of the American Ceramic Society**, v. 81, n. 11, p. 2885-2893, 1998.
- ⁽²⁾ ARACHI, Y.; ASAI, T.; YAMAMOTO, O.; TAKEDA, Y.; IMANISHI, N.; KAWATE, K.; TAMAKOSHI, C. Electrical conductivity of ZrO₂-Sc₂O₃ doped with HfO₂, CeO₂, and Ga₂O₃. Journal of the Electrochemical Society, v. 148, n. 5, p. A520-A523, 2001.
- ⁽³⁾ POLITOVA, T.I.; IRVINE, J.T.S. Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells-influence of yttria content in system (Y₂O₃)_x(Sc₂O₃)_(11-x)(ZrO2)₈₉. **Solide State Ionics**, v. 168, p. 153-165, 2004.
- ⁽⁴⁾ TIETZ, F.; FISCHER, W.; HAUBERH, T.; MARIOTTO, G. Structural evolution of Sc-containing zirconia electrolytes. **Solid State Ionics**, v. 100, p. 289-295, 1997.
- ⁽⁵⁾ LIU, M.; HE, C.; WANG, J.; WANG, W.G.; WANG, Z. Investigation of $(CeO_2)_x(Sc_2O_3)_{(0.11-x)}(ZrO_2)_{0.89}$ (*x* = 0.01–0.10) electrolyte materials for intermediate-temperature solid oxide fuel cell. **Journal of Alloys and Compounds**, v. 502, n. 1, p. 319-323, 2010.
- ⁽⁶⁾ LEE, D.S.; KIM, W.S.; CHOI, S.H.; KIM, J.; LEE, H.W.; LEE, J.H. Characterization of ZrO₂ co-doped with Sc₂O₃ and CeO₂ electrolyte for the application of intermediate temperature SOFCs. **Solid State Ionics**, v. 176, p. 33-39, 2005.
- ⁽⁷⁾ OMAR, S.; BONANOS, N. Ionic conductivity ageing behaviour of 10 mol.% Sc₂O₃–
 1 mol.% CeO₂–ZrO₂ ceramics. Journal of Materials Science, v. 45, p. 6406 6410, 2010.

- ⁽⁸⁾ HELL, A.; VITAL, A.; HOLTAPPELS, P.; GRAULE, T. Flame spray synthesis and characterisation of stabilised ZrO₂ and CeO₂ electrolyte nanopowders for SOFC applications at intermediate temperatures. **Journal of Electroceramics**, v. 22, p. 40-46, 2009.
- ⁽⁹⁾ MORI, M.; LIU, Y.; MA, S.; HASHIMOTO, S.; TAKEI, K. Investigation of Li dopant as a sintering aid for ScSZ electrolyte for IT-SOFC. **Journal of the Korean Ceramic Society**, v. 45, n. 12, p. 760-765, 2008.
- ⁽¹⁰⁾ CHEN, I.W.; WANG, X.W. Sintering dense nanocrystalline ceramics without final-stage grain growth. **Nature**, v. 404, p. 168-171, 2000.
- ⁽¹¹⁾ KIM, H.T.; HAN, Y.H. Sintering of nanocrystalline BaTiO₃. **Ceramics International**, v. 30, p. 1719-1723, 2004.
- ⁽¹²⁾ WANG, C.J.; HUANG, C.Y.; WU, Y.C. Two-step sintering of fine alumina-zirconia ceramics. **Ceramics International**, v. 35, p. 1467-1472, 2009.
- ⁽¹³⁾ KLEITZ, M.; KENNEDY, J.H. Resolution of multicomponents impedance diagrams. In: Proceedings of the International Conference on Fast Ion Transport in Solids, **Electrodes and Electrolytes**, ed. Vashishta, P.; Mundy, J.N.; Shenoy. G.K. North-Holland, Amsterdam, p.185-188, 1979.
- ⁽¹⁴⁾ YARMOLENKO S.; SANKAR, J.; BERNIER, N.; KLIMOV, M.; KAPAT, J.; ORLOVSKAYA, N. Phase stability and sintering behavior of 10 mol % Sc₂O₃– 1 mol %CeO₂–ZrO₂ ceramics. Journal of Fuel Cell Science and Technology, v.6, p. 021007, 2009.

EFFECT OF THE SINTERING TEMPERATURE AND TIME ON PHASE ASSEMBLAGE AND ELECTRICAL CONDUCTIVITY OF ZIRCONIA-SCANDIA-CERIA

ABSTRACT

 ZrO_2 -based solid electrolytes have been extensively studied over the last decades for application in solid oxide fuel cells (SOFCs). Zirconia containing scandia and ceria solid electrolyte is a potential candidate in SOFCs operating at intermediate temperatures (600 - 800 °C). In this work, commercial ZrO_2 containing 10 mol% Sc_2O_3 and 1 mol% CeO₂ was sintered by the conventional and two-step methods. Several sintering conditions were evaluated by varying the temperature as well as the residence time. High values of sintered density (> 98%) were obtained. A careful selection of the sintering conditions is necessary in order to obtain a single cubic phase, as revealed by X-ray diffraction results. The grain growth can be controlled in specimens sintered by the two-step method. The electrical conductivity show similar behavior for the grain component independent on the sintering method.

Key-words: scandia-zirconia, sintering, electrical conductivity.