CORRELAÇÃO ENTRE PERDAS DIELÉTRICAS E DISTORÇÃO ESTRUTURAL DA CERÂMICA DE NIOBATO DE ESTRÔNCIO E POTÁSSIO DOPADO COM NÍQUEL

D. H. M. Gênova*; C. Mikaro; M. A. L. Nobre; S. Lanfredi Faculdade de Ciências e Tecnologia – FCT Universidade Estadual Paulista – UNESP Departamento de Física, Química e Biologia – DFQB Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF R. Roberto Simonsen 305,C. P. 467, Presidente Prudente, SP 19060-900 *genovadhm@gmail.com

RESUMO

Neste trabalho foram investigadas as propriedades dielétricas da cerâmica de niobato de estrôncio e potássio dopado com níquel, com estrutura tungstênio bronze (TB), de estequiometria $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$, preparado pelo método de moagem de alta energia. A caracterização dielétrica foi realizada por espectroscopia de impedância, desde a temperatura ambiente até 690 °C, entre 5 Hz e 13 MHz. A substituição do átomo de nióbio por átomo de níquel na estrutura hospedeira do $KSr_2Nb_5O_{15}$ mostrou um caráter não-homogêneo nos valores das distâncias interatômicas do Ni-O sobre o octaedro de [NiO₆], levando a uma pequena distorção do octaedro de [NiO₆]. Por outro lado, as distâncias interatômicas do Nb-O no octaedro [NbO₆] mostraram um alto grau de distorção. Um aumento das perdas dielétricas foi observado com a adição de níquel na estrutura hospedeira do $KSr_2Nb_5O_{15}$ abaixo de 10 kHz, o qual aumenta com o aumento da temperatura. O comportamento dielétrico do $KSr_2(Ni_{0.75}Nb_{4.25})O_{15-\delta}$ é discutido.

Palavras-chave: espectroscopia de impedância, tungstênio bronze, distorção estrutural, propriedades dielétricas.

INTRODUÇÃO

Materiais óxidos ferroelétricos apresentam importantes aplicações em tecnologia de ponta, seja como materiais monocristalinos ou policristalinos ⁽¹⁾. Os sistemas Pb(Zr,Ti)O₃ (PZT) e SrBi₂Ta₂O₉ (Y1) são apresentados como promissores materiais ferroelétricos. Além do PZT e Y1, outros materiais como YMnO₃ ⁽²⁾ e Sr₂Nb₂O₇ ⁽³⁾ têm apresentado considerável interesse. Entretanto, a utilização do PZT tem sido limitada devido às perdas de PbO a altas temperaturas, bem como por motivos sócio-ambientais, desde que compostos derivados de Pb deverão ser substituídos nos próximos anos por materiais isentos de chumbo. Portanto, materiais contendo Pb ou à base de metais pesados têm sido gradualmente substituídos. A toxicidade do chumbo tem levado ao aumento da demanda por materiais alternativos, menos agressivos ao meio ambiente.

Nos últimos anos, óxidos ferroelétricos isentos de chumbo, *lead free*, com estrutura tungstênio bronze (TB) têm apresentado grande potencial de aplicações tecnológicas.

Em geral, cerâmicas com estrutura TB apresentam elevadas constantes dielétricas e alta polarização espontânea ⁽⁴⁾. A flexibilidade estrutural e a versatilidade química propiciam, aos materiais com estrutura TB, uma maior aplicabilidade, quando comparados com as perovskitas ferroelétricas.

A estrutura tipo TB pode ser considerada como uma derivada da perovskita clássica, uma ampla variedade de substituições de cátions é possível devido à presença de vários interstícios denominados A, B e C, respectivamente ⁽⁵⁾. Em função do número de sítios, os niobatos TB são candidatos naturais a estruturas hospedeiras, similares ao PZT. A estrutura cristalina da fase TB pode ser descrita pela fórmula química B₂A₄C₄Nb₁₀O₃₀, onde A, B e C correspondem aos diferentes sítios na estrutura TB, sendo pentagonais, tetragonais e trigonais, respectivamente, como pode ser observado na Figura 1.

O tamanho destas cavidades decresce na ordem A > B > C. Nos compostos tipo TB, metais alcalinos e/ou alcalinos terrosos estão localizados nos sítios B e A, enquanto somente pequenos cátions como o Li⁺ são encontrados no sítio C ⁽⁶⁾.

Figura 1. Exemplo de uma estrutura tipo tungstênio bronze (TB) observada ao longo do eixo ferroelétrico c. O símbolo "a" representa os octaedros NbO₆. Os sítios A, B e C estão situados em um plano a c/2 acima dos íons Nb^{5+ (7)}.

A composição e a distribuição de cátions nos niobatos de estrutura TB têm forte influência sobre as propriedades elétricas e dielétricas. Fatores como o processamento, estequiometria, homogeneidade química, textura e a densificação desses materiais influenciam suas propriedades elétricas ⁽¹⁰⁾. Alguns niobatos com estrutura TB têm sido desenvolvidos para aplicação eletro-óptica, atuando também como materiais para modulação de laser e multiplicidade de frequência, geração de segundo harmônico, aplicações em detectores piroelétricos e transdutores piezoelétricos ⁽⁸⁾.

A maioria dos estudos, realizados em materiais com estrutura TB, tem sido focada, em especial, nas suas propriedades ferroelétricas ⁽¹³⁻¹⁵⁾. Recentemente, devido ao rápido progresso na área de telecomunicações, desenvolvimento de satélites e outras tecnologias relacionadas, alguns óxidos paraelétricos à base de metais alcalinos terrosos, como Ba₂La(Ti₂Ta₃)O₁₅, Ba_{1,5}Nd_{1,5}(Ti_{2,5}Nb_{2,5})O₁₅ e Sr₂Nd(Ti₂Ta₃)O₁₅, com alta constante dielétrica, têm atraído a atenção, devido à utilização desses compostos na miniaturização de dispositivos microeletrônicos.

MATERIAIS E MÉTODOS

Pós de $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$ foram preparados por mistura mecânica de óxidos e carbonatos em um moinho mecânico de alta energia do tipo atritor ⁽⁷⁾.

A Figura 2 apresenta o Fluxograma das etapas de preparação das amostras cerâmicas para a caracterização elétrica.

Figura 2. Fluxograma de preparação da cerâmica de KSr₂(Ni_{0,75}Nb_{4,25})O₁₅₋₅.

Os reagentes de partida utilizados para a preparação do pó precursor foram: Nb₂O₅.4H₂O, Ni₂O₃, SrCO₃ e K₂CO₃. O pó precursor foi calcinado a 1150 ℃ por 10 h, em atmosfera de oxigênio, obtendo -se pós nanométricos e monofásicos de KSr₂(Ni_{0,75}Nb_{4,25})O_{15-δ}. Em seguida, pós os de KSr₂(Ni_{0.75}Nb_{4.25})O_{15-δ} foram prensados uniaxialmente na forma de pastilhas. Para a compactação das amostras foi necessária a utilização de 2 % de ligante álcool polivinílico. A sinterização das amostras foi realizada a 1280 °C durante 2 horas com uma taxa de aquecimento de 2 °C/min, ob tendo-se cerâmicas densas, em torno de 98 % da densidade teórica. Para a caracterização elétrica das cerâmicas realizou-se a deposição dos eletrodos em faces opostas das amostras com aplicação de tinta de platina tipo TR-7905, marca Tanaka.

A espectroscopia de impedância tem sido aplicada como um dos instrumentos mais versáteis e sensíveis no estudo das propriedades específicas dos materiais como: propriedades elétricas, dielétricas, caracterização de defeitos e transições de fases . O estudo da impedância de um material cerâmico permite separar as contribuições elétrica e dielétrica do grão do material dos diferentes defeitos microestruturais presentes, como contorno de grão, poros, fissuras e segunda fase, e das interfaces entre o material e os eletrodos ⁽¹⁰⁾.

Em geral, o comportamento dielétrico é investigado através da permissividade complexa. Os valores da parte real, $\varepsilon'(\omega)$, e imaginária, $\varepsilon''(\omega)$, da permissividade podem ser obtidos através dos dados de impedância de acordo com as seguintes relações:

$$\varepsilon'(\omega) = \operatorname{Im}(Z)/Z^{2}(\omega\varepsilon_{0}//S) \tag{A}$$

$$\varepsilon''(\omega) = \operatorname{Re}(Z)/Z^{2}(\omega\varepsilon_{0}/S) \tag{B}$$

onde Z é o módulo da impedância, I é a espessura da amostra e S é a área do eletrodo depositado na superfície da amostra.

Através desses parâmetros pode-se analisar o comportamento dielétrico em função da frequência numa determinada temperatura e acompanhar a evolução de $\varepsilon'(\omega)$ e $\varepsilon''(\omega)$ com a temperatura.

A permissividade relativa, a qual é independente da frequência e específica para cada temperatura, pode ser obtida a partir da evolução do oposto da parte imaginária da impedância -Im(Z) com o inverso da frequência angular ω , no intervalo de altas frequências (10⁵ a 1,3x10⁷ Hz) segundo a relação.

$$-\operatorname{Im}(Z) = \frac{1}{jC_{e}\omega}$$
(C)

onde *j* é o operador complexo e C_e é a capacitância específica.

A partir do valor da capacitância obtém-se a permissividade relativa pela Equação:

$$\varepsilon_r = \frac{C_e}{\varepsilon_0} x \frac{L}{A}$$
(D)

onde ε_0 é a permissividade do vácuo (ε_0 = 8,8542x10⁻¹² F/m), C_e é a capacitância específica, *I* é a espessura do material e *A* é a área do eletrodo depositado na superfície da amostra.

A caracterização elétrica e dielétrica do $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$ foi realizada por espectroscopia de impedância no intervalo de frequência de 500 mHz a 13 MHz em uma amostra com densidade relativa de 99 %. As medidas elétricas foram realizadas entre a temperatura ambiente e 689 °C,

através da aplicação de um sinal de 500 mV. O tempo de estabilização da temperatura entre cada medida foi de duas horas.

O comportamento dielétrico foi avaliado em ciclos de aquecimento e resfriamento.

RESULTADOS E DISCUSSÃO

A Figura 3 mostra a permissividade relativa do $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$ em função da temperatura, calculada a partir das Equações (C) e (D), em um ciclo térmico (aquecimento e resfriamento).

À temperatura ambiente, o valor da permissividade (ε_r) do KSr₂(Ni_{0.75}Nb_{4.25})O₁₅₋₀ é em torno de 900, mostrando um valor elevado, quando comparado com outros materiais cerâmicos de estrutura TB, como o NaBa₂Ta₅O₁₅ ⁽¹¹⁾ ($\epsilon_r = 40$), NaBa₂Nb₅O₁₅ ($\epsilon_r = 70$) ⁽¹¹⁾, Ba₅Sm(Ti₃Nb₇)O₃₀ ⁽¹²⁾ $(\epsilon_r = 200)$, Sr₄Ln₂(Ti₄Ta₆)O₃₀ (Ln = Nd e Sm) ⁽¹⁾ ($\epsilon_r = 240$), Ba₃Na_{2.5}Pr_{0.5}Nb₁₀O₃₀ $(\varepsilon_r = 840)^{(13)}$ e próximo ao valor da cerâmica de KSr₂Nb₅O₁₅⁽¹⁴⁾ ($\varepsilon_r = 1000$). Um pico de polarização de alta intensidade é observado em torno de 100 °C com valor igual a 1100. Este pico de máximo pode ser atribuído à temperatura de Curie, a qual é acompanhada da transição de fase ferroelétrica (P4bm) paraelétrica (P4/mbm). Durante o clico térmico não foi observado mudanças no pico de polarização, implicando que o comportamento dielétrico do KSr₂(Ni_{0.75}Nb_{4.25})O₁₅₋₅ é muito próximo de um ferroelétricio clássico. Uma histerese térmica está presente entre 200°C a 600 °C. Neste intervalo de temperatura é observado um fenômeno de polarização, representado por um "ombro" de baixa intensidade em torno de 500 °C. Em niobatos de estrutura tipo perovskita, um pico definido ou difuso, na curva da permissividade em função da temperatura, tem sido atribuído à transição de fase estrutural ou a um conjunto de transições de primeira ordem ⁽¹⁵⁾. Transições de fase do tipo ordem-desordem são também favoráveis na estrutura tungstênio bronze, devido ao caráter aberto da estrutura e ao grande número de sítios vacantes.

Figura 3. Permissividade relativa do KSr₂(Ni_{0,75}Nb_{4,25})O_{15-δ} em função da temperatura.

A Figura 4 mostra a evolução dos parâmetros $\varepsilon'(\omega) \in \varepsilon''(\omega)$ com a frequência, obtidos a partir das Equações (A) e (B), respectivamente, a várias temperaturas de medida. Uma dispersão na curva da permissividade real $\varepsilon'(\omega)$, na região de baixas frequências, < 10⁴ Hz (Figura 4(a)), é observada com o aumento da temperatura em todo o intervalo de medida. Em geral, essas dispersões, normalmente observadas em materiais dielétricos, são associadas a um mecanismo de condução do tipo *hopping* ^(7,10). A altas frequências, (>10⁴ Hz) a permissividade mostrou-se independente. Nenhum pico foi observado na curva da Figura 4(a), em todo o intervalo de frequência investigado, o que pode indicar que não ocorre o fenômeno relacionado à polarização de rede, com formação de dipolos.

A curva da permissividade imaginária $\varepsilon''(\omega)$ em função da frequência é mostrada na Figura 4(b). Uma diminuição de $\varepsilon''(\omega)$ é observada com o aumento da frequência em todas as temperaturas de medida. Elevados valores de $\varepsilon''(\omega)$ são observados com o aumento da temperatura a baixas frequências.

Dispersões na curva da permissividade, a baixas frequências, podem estar associadas à presença de defeitos na estrutura cristalina ⁽¹⁶⁾.

Figura 4. Permissividade complexa em função da frequência a várias temperaturas: (a) permissividade real e (b) permissividade imaginária.

A estrutura tungstênio bronze exibe um grande número de sítios atômicos vacantes, proporcionando uma elevada mobilidade estrutural e a capacidade de formação de soluções sólidas. Uma ampla variedade de substituição de cátions é permitida para estrutura TB. O tamanho e tipo dos íons substituídos nos diferentes sítios da estrutura, e a quantidade de desordem e distorções estruturais, têm um efeito significativo nas propriedades elétricas desses materiais. Além disso, pode-se considerar a perda de oxigênio e desvio estequiométrico a alta temperatura ⁽¹⁷⁾. A substituição dos átomos de nióbio por átomos de níquel promove certo grau de desordem estrutural e distorções dos octaedros de nióbio.

A Tabela 1 apresenta os valores das distâncias entre Ni-O e Nb-O nos octaedros da estrutura do $KSr_2(Ni_{0.75}Nb_{4.25})O_{15-\delta}$.

A substituição do átomo de nióbio por átomo de níquel na estrutura hospedeira do KSr₂Nb₅O₁₅ mostrou um caráter não-homogêneo nos valores das distâncias interatômicas do Nb-O, levando a um alto grau de distorção do octaedro de [NbO₆]. Por outro lado, as distâncias interatômicas do Ni-O mostraram-se mais homogêneas, apresentado um pequeno grau de distorção dos octaedros [NiO₆]. O menor comprimento das ligações Ni—O comparadas às ligações Nb—O mostra que os octaedros [NiO₆] possuem um volume menor que aquele dos octaedros [NbO₆].

Tabela	1.	Distâncias	interatômicas	nos	octaedros	da	cerâmica	de
KSr ₂ (Ni ₀	_{,75} Nk	0 _{4,25})Ο _{15-δ} .						

	Ligações	1	2	3	4	5	6
	Distância Interatômica Ni-O (Å)	1,86	1,53	1,53	1,53	1,53	2,07
6 6	Distância Interatômica Nb-O (Å)	1,91	2,05	2,30	2,16	1,84	2,13

Isto resulta em uma diminuição do volume da célula unitária, comparando-se com a estrutura hospedeira do $KSr_2Nb_5O_{15}$. Como um todo, o grau de distorção do $[NiO_6]$ e $[NbO_6]$ são compatíveis com o desenvolvimento de rotação e inclinação dos poliedros. Ambos comprimentos de ligações entre nióbio e oxigênios apicais (O1 e O6) são diferentes, o que pode ser associado à posição do nióbio fora do centro. A polarização ferroelétrica em óxidos niobatos ferroelétricos é atribuída ao deslocamento do Nb a partir da posição central do octaedro $[NbO_6]$, "off-center", Este fenômeno mostrou uma diminuição da temperatura de Curie do $KSr_2(Ni_{0.75}Nb_{4,25})O_{15-\delta}$, $T_C = 100$ °C, quando comparada com a estrutura hospedeira do $KSr_2Nb_5O_{15}$ ($T_C = 154$ °C) ⁽⁷⁾. A Figura 5 mostra a evolução do inverso da permissividade em função da temperatura.

Figura 5. Evolução de 1/ε em função da temperatura.

A extrapolação da curva na região linear $(1/\epsilon_r \rightarrow 0)$ permite determinar a temperatura de Curie, sendo igual a 100 °C. Esta temperatura coincide com a temperatura onde é observado o pico de máxima intensidade na curva da permissividade da Figura 3.

CONCLUSÕES

A espectroscopia de impedância mostrou-se adequada para a caracterização dielétrica da cerâmica de $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$. A distância dos cátions Nb do centro do poliedro aumenta com a adição dos cátions Ni. Tal aumento induz a uma intensa distorção dos poliedros [NbO₆], os quais sofrem rotação e inclinação. A temperatura de Curie do $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$, determinada a partir do inverso da permissividade relativa em função da temperatura, mostrou um valor igual a 100 °C. Esta temperatura é associada à transição de fase ferroelétrica (P4bm) \rightarrow paraelétrica (P4/mbm).

AGRADECIMENTOS

CNPq – PIBIC e FAPESP pelo apoio financeiro e a Novocontrol GmbH pelas facilidades.

REFERÊNCIAS

- ⁽¹⁾ D'YACHENKO, O. G. *et al.* Structure and properties of Ba_{6-x}Ln_xNb₁₀O₃₀, Ln = La, Ce and Nd compounds. Material Resource Bulletin, v. 32, p. 409, 1997.
- ⁽²⁾ FUJIMURA, N. *et al.* Epitaxially grown YMnO₃ film: new candidate for nonvolatile memory devices, **Applied Physics Letters**, v. 69, p. 1011, 1996.
- ⁽³⁾ FUJIMORI, Y. *et al.* Application of Sr₂Nb₂O₇ family ferroelectric films for ferroelectric memory field effect transistor. Japan Journal Applied Physics, v. 37, p. 5207, 1998.
- ⁽⁴⁾ YANG, B. *et al.* Structural, dielectric and optical properties of barium strontium sodium niobate (Sr_{0.7}Ba_{0.3})₂NaNb₅O₁₅ single crystals **Journal of Physics D**, v. 37, p. 921–924, 2004.

- ⁽⁵⁾ TRIBOTTÉ, B; HAUSSONNE, J. M.; DESGARDIN, G. K₂Sr₄Nb₁₀O₃₀-based Dielectric Ceramics Having the Tetragonal Tungsten Bronze Structure and Temperature-stable High Permittivity, **Journal of the European Ceramic Society**, v. 19, p. 1105-1109, 1999.
- ⁽⁶⁾ ABRAHAMS, S. C.; JAMIESON, P. B.; BERNSTEIN, J. L. Ferroelectric tungsten bronze-type crystal structures III – potassium lithium niobate K_(6-x-y)Li_(4+x)Nb_(10+y)O₃₀. Journal Chemical Physics, v. 54, 2355, 1971.
- ⁽⁷⁾ LANFREDI, S. *et al.* Síntese e Caracterização Estrutural do Niobato de Potássio e Estrôncio com Estrutura tipo Tetragonal Tungstênio Bronze (TTB), **Cerâmica**, v. 51, n. 318, p. 151-156, 2005.
- ⁽⁸⁾ KARAKI, T. *et al.* Growth and optical properties of ferroelectric K₃Li₂Nb₅O₁₅ single crystals. **Japan Journal Applied Physics**, v. 37, p. 5277, 1998.
- ⁽¹⁰⁾ NOBRE, M. A. L.; LANFREDI, S. Phase transition in sodium lithium niobate polycrystal: an overview based on impedance spectroscopy. **Journal Physics and Chemistry of Solids**, v. 62, p. 1999-2006, 2001.
- ⁽¹¹⁾ BEHERA, B.; NAYAK, P.; CHOUDHARY, R. N. P. Structural, dielectric and electrical properties of NaBa₂X₅O₁₅ (X=Nb and Ta) ceramics. **Materials** Letters, v. 59, p. 3489-3493, 2005.
- ⁽¹²⁾ GANGULY, P.; JHA, A. K.; DEORI, K. L. Complex impedance studies of tungsten-bronze structured Ba₅SmTi₃Nb₇O₃₀ ferroelectric ceramics. **Solid State Communications**, v. 146, p. 472-477, 2008.
- ⁽¹³⁾ SHANMING, K. E. *et al.* Dielectric, ferroelectric properties, and grain growth of Ca_xBa_{1-x}Nb₂O₆ ceramics with tungsten-bronzes structure. **Journal of Applied Physics**, v. 104, p. 024101 2008.
- ⁽¹⁴⁾ GIESS, E. A. *et al.* Ferroelectric and optical properties of KSr₂Nb₅O₁₅. **Applied Physics Letters**, v. 11, n. 7, p. 233-234, 1967.
- ⁽¹⁵⁾ NOBRE, M. A. L.; LANFREDI, S., Impedance Spectroscopy Analysis of High Temperature Phase Transitions in Sodium Lithium Niobate Ceramic. Journal of Physics Condensed Matter, v. 12, p. 7833, 2000.
- ⁽¹⁶⁾ NOBRE, M.A.L., LANFREDI, S. Dielectric properties of Bi₃Zn₂Sb₃O₁₄ ceramics at high temperature. **Materials Letters**, v. 47, p. 362-366, 2001.
- ⁽¹⁷⁾ CHEN, R. Z. *et al.* Microstructural and dielectric properties of ceramic based on K₂Sr₄Nb₁₀O₃₀ and BaTiO₃. In: **Proceedings of the 13th IEEE** *international symposium on applications of ferroelectrics*, Nara, Japan, 28 maio – 01 junho, p. 251–254, 2002.

CORRELATION BETWEEN DIELECTRIC LOSS AND STRUCTURAL DISTORTION OF THE NICKEL DOPED POTASSIUM STRONTIUM NIOBATE CERAMIC

ABSTRACT

In this work was investigated the dielectric properties of the nickel doped potassium strontium niobate ceramic, with tetragonal tungsten bronze-TTB type structure and of $KSr_2(Ni_{0,75}Nb_{4,25})O_{15-\delta}$ stoichiometry, prepared by the high energy ball milling method. The dielectric characterization was carried out by impedance spectroscopy from room temperature up to 690 °C, between 5 Hz e 13 MHz. The substitution of the niobium atom by Ni atom in the host structure of the KSr₂Nb₅O₁₅ showed a non-homogeneous character in the interatomic distance values of the Ni-O in the [NiO₆] octahedron, leading to a small distortion of the [NiO₆] octahedron. Otherwise, interatomic distances of the Nb-O in the [NbO₆] octahedron showed a high distortion degree. An increase of the dielectric loss was observed with addition of nickel in the host structure of the KSr₂Nb₅O₁₅ below 10 kHz, which increases as a function of temperature. The dielectric behavior of the KSr₂(Ni_{0.75}Nb_{4.25})O_{15- $\delta}} is discussed.</sub>$

Key-words: impedance spectroscopy, tetragonal tungsten bronze, structural distortion, dielectric properties.