PROPRIEDADES ELÉTRICAS DE UM NOVO VARISTOR À BASE DE WO3 E SUA CORRELAÇÃO COM A MICROESTRUTURA

P. A. P. Pessôa¹; M. M. Oliveira¹; R. L. Brito¹; J. H. G. Rangel¹; E. Longo² Departamento Acadêmico de Química/Instituto Federal de Educação, Ciência e Tecnologia do Maranhão – Av. Getúlio Vargas, nº4 – Monte Castelo – São Luís-MA – CEP 65030-005; pedroalberto.química@gmail.com (1) IFMA; (2) IQ-UNESP-Araraquara

RESUMO

O estudo da influência de doadores de cargas trivalentes nas propriedades de varistores tem sido amplamente discutido na literatura. Neste trabalho, analisou-se a influência do La₂O₃ no sistema varistor WO₃.Co₂O₃.Nb₂O₅. Por meio da difração de raios X e da Microscopia Eletrônica de Varredura, observou-se a presença da fase majoritária WO₃. Medidas de corrente contínua mostraram que estes sistemas tendem à aplicação em baixa tensão, pois os valores do campo elétrico de ruptura variaram entre 7,14 V.cm⁻¹ e 22,93 V.cm⁻¹. Esses valores podem está associado ao tempo de sinterização utilizado, que promoveu valores de tamanho médio de grão entre 2,98 µm e 48,6 µm reduzindo a quantidade de barreiras efetivas, e gerando valores de tensão por barreira entre 0,003 e 0,035. Encontraram-se valores de coeficiente de não-linearidade entre 2,33 e 5,43 e valores de corrente de fuga entre 93 µA e 304 µA.

Palavras-chave: varistores, óxido de tungstênio, baixa tensão

INTRODUÇÃO

Os materiais cerâmicos são normalmente combinações de elementos metálicos e elementos não-metálicos, sendo tipicamente isolantes térmicos e elétricos, são mais resistentes a altas temperaturas e a ambientes corrosivos que os metais e polímeros. E também muito duros, porém frágeis ⁽¹⁾. Também são policristalinos possuindo alta concentração de defeitos em sua estrutura cristalina, que está diretamente ligado ao processo de obtenção das peças cerâmicas. Uma das principais características das cerâmicas varistoras é a presença de grãos, os quais estão interligados por uma interface que é tida como fator determinante das propriedades elétricas⁽²⁾. Os varistores apresentam três regiões distintas das características de tensão-corrente (I-V) como mostra a Figura 1.1.

Figura 1.1: Característica de tensão-corrente de um sistema varistor.

A região I, região de pré-ruptura ou contorno de grão a baixas voltagens corresponde à barreira de isolante do contorno que rodeia o grão de alta condutividade. A segunda região (II), região de ruptura proporciona o uso dos varistores como dispositivos de proteção em equipamentos eletroeletrônicos, restringindo as sobrevoltagens transitórias, ou seja, mantendo o valor do potencial elétrico quando ocorre um grande aumento na intensidade do campo elétrico aplicado. Com isso os varistores também são conhecidos como resistores não lineares ou limitadores de voltagem. Através da análise da região de condução determina-se o valor do coeficiente de não-linearidade (α) que é fator determinante da característica varistora, pois quanto mais alto o valor de α , mais eficiente será o dispositivo, protegendo um circuito de sobrevoltagem. Sendo expresso de acordo com a seguinte relação: $J = K.E^{\alpha}$. Sendo K uma constante dependente de microestrutura, relacionada com a resistência elétrica do material e α é um número adimensional que exprime o grau de não-linearidade, J é a densidade de corrente (mA.cm⁻²) e E o campo elétrico aplicado (V.cm⁻²). E a região III que é a região de pós-ruptura, corresponde a região onde a resistência dos grãos semicondutores controla o fluxo de corrente.

Até a década de 30 os dispositivos utilizados na proteção de equipamentos contra sobrevoltagens eram os retificadores de Selênio, empregados na proteção de sistemas telefônicos. A partir de 1930 os retificadores foram substituídos por varistores à base de carbetos de Silício (SiC) que possuíam o coeficiente de não-linearidade (α) igual a 5. Em 1957, Valee e Mashikovich ⁽³⁾ publicaram pela primeira vez um sistema de óxido de zinco com óxido de titânio (ZnO-TiO₂) que possuía propriedades não-ôhmicas, com α na faixa de 30-100, culminando em 1969 com o anúncio de Matsuoka iniciando o desenvolvimento de varistores à base de ZnO⁽⁴⁾, que é o mais usado comercialmente nos dias de hoje.

Com esta descoberta, vários estudos têm sido empregados com intuito de desenvolver varistores mais eficientes e de baixo custo. Dentre os óxidos estudados encontram-se na literatura o Óxido de Zinco $(ZnO)^{(5,6)}$, Óxido de Estanho $(SnO_2)^{(6,7)}$, Titanato de Estrôncio $(SrTiO_3)^{(8)}$, Óxido de Titânio $(TiO_2)^{(9,10)}$ e mais recentemente varistores à base de Óxido de Tungstênio $(WO_3)^{(11)}$. O coeficiente de não-linearidade (α) dos óxidos SrTiO₃, TiO₂ e WO₃ são muito baixos ($2 \le \alpha \le 12$), quando comparados com os dos varistores à base de ZnO e SnO₂.

Os materiais cerâmicos à base de WO₃ são interessantes principalmente para aplicação como varistores de baixa voltagem. Dopado com Na₂O e MnO₂ estes sistemas mostram características não-lineares de tensão-corrente. A adição de Na₂O tem participação essencial no comportamento não-ôhmico do varistor, assim como a adição de Al₂O₃, MnO₂, Co₃O₄, que são analisados por Makarov e Trontelj⁽¹¹⁾. Sendo estes os primeiros a estudar o WO₃^(11,12,13), em 1994 observando que com a adição de 0,5%mol de Na₂CO₃ e 3%mol de MnO₂ o sistema possuía características varistoras idênticas aos sistemas utilizados até então, porém com α igual a 7. E analisando efeito do Al₂O₃⁽¹³⁾ nas propriedades microestruturais e elétricas dos varistores à base de WO₃ no sistema WO₃.0,5Na₂O.3,0MnO₂.0,5Al₂O₃ encontraram um coeficiente de não-linearidade (α) igual a 6,0 e E_r igual a 17 Vmm⁻¹.

Wang e colaboradores⁽¹⁴⁾ estudaram os efeitos dos dopantes e da temperatura na não-linearidade do varistor à base de WO₃ e verificaram que utilizando a temperatura de sinterização 1150°C o α = 2,1 e E_r = 64,8 Vmm⁻¹. Quando dopado com 4,0%mol de Bi₂O₃ apresentou α = 4,0 e na substituição do óxido de bismuto por 1,0%mol de Co₂O₃, α = 5,5.

Outros estudos têm sido realizados a fim de verificar a influência de outros dopantes nas propriedades microestrutural e elétrica de sistemas à base de $WO_3^{(15,16,17)}$. Como exemplo cita-se o efeito do óxido de Cério nas propriedades elétricas e microestruturais dos varistores à base do WO_3 , onde Xin-Sheng Yang e colaboradores⁽¹⁵⁾ encontraram na adição de 0,2%mol deste óxido α igual a 6,83 e com campo elétrico de ruptura (E_r) a 50,9 V.mm⁻¹.

MATERIAIS E MÉTODOS

Neste trabalho foi estudada a influência do dopante óxido de lantânio (La₂O₃) nas propriedades elétricas e microestruturais do óxido de tungstênio, variando a concentração do dopante de 0,05%mol a 0,20%mol permanecendo constante o valor dos óxidos de cobalto III (1,00%mol) e nióbio (0,05%mol). Os sistemas utilizados estão representados na tabela 1.

Tabela 1 – Sistemas e composições utilizadas para a preparação das amostras.

SISTEMAS	WO ₃ (%mol)	Co ₂ O ₃ (%mol)	Nb ₂ O ₅ (%mol)	La ₂ O ₃ (%mol)
1- WCNbLa0,05	98,90	1,00	0,05	0,05
2- WCNbLa0,10	98,85	1,00	0,05	0,10
3- WCNLa0,15	98,80	1,00	0,05	0,15
4- WCNLa0,20	98,75	1,00	0,05	0,20

Para o preparo das amostras pós dos óxidos foram homogeneizados em moinhos de bolas, via úmida com álcool isopropílico P.A., em jarros de polipropileno com bolas de zircônia estabilizadas com óxido de Ítrio (Y_2O_3), por 6 horas e em seguida secos em estufa a 100 °C por 4 horas. Após a secagem, os pós foram granulados em peneira de 100 Mesh. E então prensados uniaxialmente, em forma de pastilhas (9 mm X 1 mm), e isostaticamente para posterior sinterização. As pastilhas foram sinterizadas em um forno tipo mufla modelo LF2314 da Jung LTDA. As densidades à verde e sinterizadas foram determinadas pelo método geométrico utilizando a relação: $\rho = m/V$. Onde ρ é a densidade; m a massa da amostra e V o volume da amostra. As microestruturas das amostras foram analisadas utilizando um Microscópio Eletrônico de Varredura de Alta Resolução com canhão de emissão de elétrons por efeito de campo (MEV/FEG) da marca ZEISS (modelo Supra 35). As fases cristalinas foram observadas pela técnica de difração de raios X por meio de um difratômetro de raios X da marca RIGAKU, modelo DMAX 2500 PC. Na determinação da característica de corrente-voltagem utilizou-se uma fonte de tensão estabilizada tipo Keithley 2410-C Source Meter. As faces das amostras foram pintadas com tinta de prata para a formação de contatos elétricos e então, tratadas a 200 °C por 30 minutos, com o propósito de fixar o eletrodo. O valor do coeficiente não linear (α) foi obtido por meio da regressão linear dos pontos a partir de 1 mA.cm⁻ 2 e o valor do campo elétrico de ruptura (E_r) foi obtido nesta densidade de corrente.

RESULTADOS E DISCUSSÃO

Caracterização Morfológica

A Figura 1 ilustra o difratograma de raios X para os sistemas em estudo. Foi observado pela análise da ficha catolográfica JCPDS nº 71-2141 que os sistemas apresentam somente a fase do WO₃. Na Tabela 2 são apresentados os valores das densidades geométricas das pastilhas a verdes e sinterizadas. Pôde-se observar que a sinterização promoveu a densificação das pastilhas, e isto ocorre devido, a redução na quantidade de poros provocada pela diminuição do volume durante tal processo. Observou-se, também, que o sistema com 0,05%mol de La₂O₃ apresentou maior densificação. Tais resultados são corroborados com as caracterizações morfológicas obtidas por MEV/FEG, Figura 2.

Figura 1. Difratogramas dos sistemas WCNLa0,05; WCNLa0,10; WCNAI0,15 e WCNLa0,2.

SISTEMAS	ρ _∨ (g.cm⁻³)	% ρ _τ	ρ _S (g.cm⁻³)	% ρ _τ
1- WCNbLa0,05	4,34	60,57	6,45	90,03
2- WCNbLa0,10	4,38	61,24	6,41	89,48
3- WCNLa0,15	4,51	62,96	5,86	81,83
4- WCNLa0,20	4,28	59,83	5,86	81,89

Tabela 2 – Densidades das pastilhas verdes e sinterizadas dos sistemas em estudo.

Figura 2. Micrografias dos sistemas: (a) WCNLa0,05; (b) WCNLa0,10; (c) WCNLa0,15 e (d) WCNLa0,2.

Caracterização Elétrica

As propriedades elétricas podem ser observadas na Figura 3 onde se têm a curva de campo elétrico e densidade de corrente dos sistemas em estudo. Através da regressão linear da curva referente ao logaritmo do campo elétrico pelo logaritmo da densidade de corrente da curva a partir de 1mA.cm⁻², obtiveram-se os valores do coeficiente de não-linearidade, tensão de ruptura e corrente de fuga que estão relacionados na Tabela 2.

SISTEMA	α	E _r (V.cm ⁻¹)	I _f (μA)
1- WCNAI0,05	4,6	18,96	153
2- WCNAI0,01	5,43	22,93	93
3- WCNAI0,15	2,47	8,75	304
4- WCNAI,20	2,33	7,14	253

Tabela 2 - Coeficiente de não-linearidade, α , Campo Elétrico de Ruptura, E_r e Corrente de Fuga I_f para os sistemas em estudo.

YANG et al.¹⁸ observam-se valores de α num intervalo igual ao apresentado nos sistemas em estudo e os valores do campo elétrico de ruptura superior. Com base na curva e nos valores de α , E_r e I_f entende-se que as amostras possuem características não-lineares para aplicação em baixas tensões devido o E_r está no intervalo de 7-19 V.cm⁻¹.

CONCLUSÕES

Cerâmicas densas foram obtidas com as novas composições de varistores a base de WO₃. Observou-se a formação de apenas uma fase nos difratogramas de raios X, a fase do WO₃. Os sistemas em estudo apresentaram características não-ôhmicas semelhantes aos encontrados na literatura.

AGRADECIMENTOS

Os autores agradecem à FINEP, ELETRONORTE, CNPq, FAPEMA, ao IFMA, ao LIEC-UFSCar, e ao LIEC-UNESP-Ar.

REFERÊNCIAS

1. PADILHA, A. F. *Materiais de Engenharia – microestrutura e propriedades*. São Paulo: Hermes, 1997.

2. LIEC. *Varistores*. Disponível em: http://www.liec.ufscar.br. Acesso em: 06 jul. 2005.

3. VALEE, K. S. MASHIKOVICH, K. "Nonlinear semiconducting based upon ZnO-TiO₂". Sov. Phys. *Tech. Phys.*, 2 (1957) 1533.

4. MATSUOKA, M. "Nonhomic properties of zinc oxide ceramics". *J. Appl. Phys.*, 10, 6 (1971) 736.

5. PIANARO, S. A. BUENO, P. R. LONGO, E. VARELA., J. A. "A new SnO₂-based varistor system". *J. Mat. Sci. Lett*. 14 (1995) 692.

6. COSTA, A. C. F. M. "Características elétricas do sistema varistor ZnO.Bi₂O₃.Co₂O₃.MnO₂ dopado com Ni₂O₃". *Cerâmica* 44 (1998) 287.

7. BUENO, P. R. OLIVEIRA, M. M. CÁSSIA-SANTOS, M. R. LONGO, E. TEBCHERANI, S. M. VARELA, J. A. "Varistores à base de SnO₂: estado da arte e perspectivas". *Cerâmica* 46, 299 (2000) 124.

8. YAMAOKA, N. MASUYAMA, M. FUKUI, M. "SrTiO₃ – based boundary – Layer capacitor having varistor characteristics". *Am. Ceram. Soc.* Bull. 62 (1983) 698.

9. YAN, M.F. RHODES, W.W.. "Preparation and properties of TiO₂ varistors". *Appl. Phys. Lett.* 40,6 (1982) 536.

10. BUENO, P.R. CAMARGO, E. LONGO, LEITE, E. E. PIANARO, S. A. VARELA, J. A.. "Effect of Cr_2O_3 in the varistor behavior of TiO_2 . *J. Mat. Sci. Lett.* 15 (1996) 2048.

11. MAKAROV, V. TRONTELJ, M.. "Novel varistor material based on Tungsten oxide". *J. Mater. Sci. Lett.*, 13 (1994) 937.

12. MAKAROV, V. TRONTELJ, M.. "Sintering and electrical conductivity of doped WO₃". *J. Eur. Ceram. Soc.*, 16 (1996) 791.

13. WANG,Y. ABURAS, Z. YAO, K. L. LIU, Z. L. "Effects os doping and temperature on nonlinearity of WO₃ varistor". *J. Mater. Sci. Lett.*, 58 (1999) 51.

14. MAKAROV, V. TRONTELJ, M.. "Effect of Al₂O₃ on the microestruture and electrical properties of WO₃-based varistor ceramics". *J. Eur. Ceram.* Soc., 20 (2000) 747.

15. YANG, X. WANG, Y. DONG, L. CHEN, M. ZHANG, F. QI. L. "Effect of CeO_2 on the microestruture and electrical properties of WO_3 capacitor-varistor ceramics". *J. Mater. Sci. Lett.*, 110 (2004) 6.

16. WANG, Y. YANG, X. S. LIU, Z. L. K. L. Yao. "Varistor effect of WO₃-based ceramics at high temperatures". *J. Mater. Sci. Lett.* 58 (2004) 1017-1019.

17. YANG, X. WANG, S. DONG, Y. L. "WO₃-based capacitor-varistor doped with Gd₂O₃". *J. Mater. Sci. Lett.*, 86 (2004) 253.

18. YANG, X. WANG, S. ZHAO, Y. Y.. "Effect of Dy_2O_3 and La_2O_3 on the microstructure and electrical properties of WO₃ ceramics". *J. Mater. Sci. Lett.*, 98 (2006) 225.

ELECTRICAL PROPERTIES OF A NOVEL VARISTOR-BASED WO3 AND ITS CORRELATION WITH MICROSTRUCTURE

ABSTRACT

The study of the influence of dopants trivalents in the properties varistors have been widely discussed in literature. This paper analyzed the influence of La_2O_3 $WO_3.Co_2O_3.Nb_2O_5$ varistor system. By means of X-ray diffraction and scanning electron microscopy, we observed the presence of a major phase WO_3 . Measures dc showed that these systems tend to use in low voltage, since the values of the electrical breakdown field ranged from 7.14 V.cm⁻¹ and 22.93 V.cm⁻¹. These values can is associated with the time of sintering, which promoted values of average grain size between 2.98µm and 48.6µm by reducing the amount of effective barriers and creating a barrier voltage values between 0.003 and 0.035. We found coefficients of non-linearity between 2.33 and 5.43 and values of leakage current between 93 µA and 304 µA.

Key-words: varistors, tungsten oxide, low voltage