REFINAMENTO DE ESTRUTURAS CRISTALINAS ATRAVÉS DO MÉTODO DE RIETVELD

C. T. Kniess^{1,2}, P. B. Prates³, H. G. Riella⁴, N. C. Kuhnen⁴, J. C. de Lima⁵ ¹Universidade Ibirapuera – UNIb Av. Interlagos 1329 – CEP: 044661-000 - São Paulo – SP ²Instituto de Pesquisas Energéticas e Nucleares – IPEN/SP ³Departamento de Engenharia Mecânica ⁴Departamento de Engenharia Química e Engenharia de Alimentos ⁵Departamento de Física Universidade Federal de Santa Catarina – UFSC Campus Universitário – Trindade – Florianópolis – SC CEP: 88040-970 kniess@labtucal.ufsc.br

RESUMO

A quantificação das fases cristalinas é uma etapa fundamental na determinação da estrutura, propriedades e aplicações de um material. Rietveld desenvolveu um método para refinamento de estruturas com base na comparação entre um padrão de difração de raios X calculado e o padrão observado, que foi amplamente estendido para a aplicação na análise quantitativa de fases e estudos de microdeformação. O Método de Rietveld permite, simultaneamente, realizar o refinamento de célula unitária, de estrutura cristalina, análise de microestrutura, análise quantitativa de fases e determinação de orientação preferencial. Dentro desse contexto, o objetivo do trabalho é o refinamento das estruturas cristalinas, e conseqüente quantificação das mesmas, em materiais cerâmicos com a utilização do Método de Rietveld. Os materiais cerâmicos foram obtidos com a adição de diferentes percentuais de cinzas pesadas de carvão mineral como matéria-prima não plástica em conjunto com matérias-primas argilosas.

Palavras-Chave: Cinzas de carvão, materiais cerâmicos, Método de Rietveld.

INTRODUÇÃO

Os métodos de caracterização de materiais fazendo uso da difração de raios X ou de nêutrons envolvem métodos interessantes para indexação de fases cristalinas, refinamentos de célula a unitária, determinação de tamanho de cristalito e microdeformação de rede, análise quantitativa de fases, determinação de estruturas cristalinas, refinamento de estruturas cristalinas e determinação de orientação preferencial (textura)⁽¹⁾.

A quantificação das fases cristalinas é uma etapa fundamental na determinação da estrutura, propriedades e aplicações de um material. Rietveld^(2,3) desenvolveu um método para refinamento de estruturas, baseado na comparação entre um padrão de difração calculado e o padrão observado, que foi estendido posteriormente para aplicação na análise quantitativa de fases e estudos de microdeformação. O Método de Rietveld leva em conta os dados cristalográficos teóricos (sistema cristalino, grupo espacial, posições atômicas, parâmetros de rede, número de ocupação e fator de temperatura isotrópica) das fases cristalinas.

O método de Rietveld é baseado na comparação entre um padrão de difração calculado e o padrão observado. O padrão calculado é obtido utilizando-se a célula unitária como base. Este padrão calculado é então comparado ao padrão observado e os parâmetros do modelo são ajustados pelo método dos mínimos quadrados⁽⁴⁾.

O método de Rietveld permite, simultaneamente, realizar refinamento de célula unitária, refinamento de estrutura cristalina, análise de microestrutura, análise quantitativa de fases e determinação de orientação preferencial⁽⁴⁾.

Os indicadores estatísticos numéricos $R_P e R_{WP}$ são parâmetros comparativos entre os difratogramas teórico e experimental. Estes podem ser utilizados para o acompanhamento da convergência do modelo. $R_P e R_{WP}$ devem atingir o valor de R_{EXP} para se considerar a modelagem aceitável. As Equações A, B e C definem os indicadores R_P , $R_{WP} e R_{EXP}$, respectivamente.

$$R_{P} = 100 \left\{ \frac{\left[\sum I_{io} - I_{ic}\right]}{\sum I_{io}} \right\} \qquad R_{WP} = 100 \left\{ \frac{\left[\sum x(I_{io} - I_{ic})^{2}\right]}{\sum x_{i}(I_{io})^{2}} \right\}^{\frac{1}{2}} \qquad R_{EXP} = 100 \left\{ \frac{(N-P)}{\left[\sum x_{i}(I_{io})^{2}\right]} \right\}^{\frac{1}{2}}$$
(A)
(B)
(C)

Onde: I_{i0} é a intensidade observada na posição angular i; I_{iC} é a intensidade calculada na posição angular i; N é o número de pontos experimentais; P é o número de parâmetros refinados; R_B é o fator de convergência baseado nas intensidades do espectro experimental; R_{XB} é o fator de convergência baseado nas intensidades do espectro experimental e nas concentrações encontradas e R_{exp} é o fator relacionado com a qualidade experimental do espectro.

De acordo com esse contexto, o objetivo desse trabalho é a quantificação das fases cristalinas de sistemas multifásicos, através do Método proposto por Rietveld. As amostras estudadas são materiais cerâmicos desenvolvidos com a adição de cinzas pesadas de carvão mineral.

MATERIAIS E MÉTODOS

Os materiais cerâmicos foram desenvolvidos a partir da mistura de duas matérias-primas argilosas e da cinza pesada de carvão mineral, subproduto proveniente da combustão do carvão mineral na Termelétrica Jorge Lacerda.

Após a moagem a seco e compactação, os corpos-de-prova foram sinterizados na temperatura de 1150 °C com taxa de aquecimento de 500 °C/hora e tempo de permanência no patamar de sinterização de 2 horas. Os materiais cerâmicos desenvolvidos sofreram nova moagem, a fim de serem caracterizados por difratometria de raios X através do método do pó.

As análises de Difração de Raios X dos materiais cerâmicos foram obtidas num difratômetro Philips, modelo X´Pert, ($\lambda = 1,5406$ Å). As medidas foram feitas a 0,02°/2s, em 2 θ de 10 a 90°. Para identificação das fases presentes foram utilizados os bancos de dados ICSD⁽⁵⁾ e JCPDS⁽⁶⁾.

O programa utilizado para o refinamento foi o DBWS 98. O programa DMPLOT possibilitou a comparação entre os espectros teórico e refinado.

RESULTADOS E DISCUSSÃO

A Figura 1 apresenta os difratogramas de raios X dos materiais cerâmicos M1, M2, M3, M4. Estes materiais foram obtidos no trabalho descrito por KNIESS⁽⁷⁾. As fases cristalinas identificadas nos materiais cerâmicos também estão apresentadas na Figura 1.

Figura 1 - Difratogramas de Raios X dos materiais cerâmicos sinterizados na temperatura de 1150⁰C.

As informações de entrada para o refinamento pelo método de Rietveld, que consiste na comparação entre a estrutura dos modelos teóricos e do espectro observado, estão apresentadas na Tabela 1.

Tabela 1- Dados cristalográficos teóricos da fase cristalina quartzo presente nos materiais cerâmicos sinterizados.

Fase	Parâmetros de Rede (Å)	Posições Atômicas	Números de Ocupação	Fatores Térmicos Isotrópicos (B _o)	
Tridimita (SiO ₂) ICSD 29343 PDF 75-0638 P 63 2 2 (182)	a = b = 5,01 c = 8,18 $\alpha = \beta = 90$ $\gamma = 120$	Si (4f), x = 0,333, y = 0,667, z = 0,47 O (2c), x = 0,333, y = 0,667, z = 0,25 O (6g), x = 0,425, y = 0,0, z = 0,0	Si (4f) = 1,0 O (2c) = 1,0 O (6g) = 1,0	$B_{\circ}(Si) = 0$ $B_{\circ}(O) = 0$	
Mulita (Al _{2,35} Si _{0,64} O _{4,82}) ICSD 23726 PDF 15-776 P B A M (55)	a = 7,566 b = 7,682 c = 2,884 $\alpha = \beta = \gamma = 90$	Al (2a), $x = y = z = 0,0$ Al (4h), $x = 0,2380, y = 0,2945, z = 1/2$ Al (4h), $x = 0,3512, y = 0,1590, z = 1/2$ Si (4h), $x = 0,3512, y = 0,1590, z = 1/2$ O (4g), $x = 0,3729, y = 0,2808, z = 0,0$ O (4h), $x = 0,1420, y = 0,0777, z = 1/2$ O (2d), $x = 0,0, y = 1/2, z = 1/2$ O (4h), $x = 0,0509, y = 0,4482, z = \frac{1}{2}$	Al $(2a) = 1,0$ Al $(4h) = 0,34$ Al $(4h) = 0,34$ Si $(4h) = 0,33$ O $(4g) = 1,0$ O $(4h) = 1,0$ O $(2d) = 0,41$ O $(4h) = 0,21$	AI $(2a) = 0,43$ AI $(4h) = 0,51$ AI $(4h) = 0,49$ Si $(4h) = 0,49$ O $(4g) = 0,97$ O $(4h) = 0,92$ O $(2d) = 1,4$ O $(4h) = 0,84$	
Hematita (Fe ₂ O ₃) ICSD 15840 PDF 13-0534 R -3 C H (167)	a = b = 5,038 c = 13,772 $\alpha = \beta = 90$ $\gamma = 120$	Fe (12c), x = 0,0, y = 0,0, z = 0,3553 O (18e), x = 0,3059, y = 0,0, z = 0,25	Fe = 1,0 O = 1,0	$B_{o}(Fe) = 0$ $B_{o}(O) = 0$	
Quartzo (α-SiO ₂) ICSD 29210 PDF 05-490 P 32 2 1 S (154)	a = b = 4,913 c = 5,405 $\alpha = \beta = 90$ $\gamma = 120$	Si (3a), x = 0,469, y = 0,0, z = 0,0 O (6c), x = 0,403, y = 0,253, z = 0,122	Si = 1,0 O = 1,0	$B_{o}(Si) = 0$ $B_{o}(O) = 0$	
SiO ₂ ICSD 34889 PDF 76-0912 P 43 21 2 (96)	a = b = 7,456 c = 8,604 $\alpha = \beta = \gamma = 90$	Si (8b), x = 0,326, y = 0,120, z = 0,248 Si (4a), x = 0,410, y = 0,410, z = 0,0 O (8b), x = 0,445, y = 0,132, z = 0,400 O (8b), x = 0,117, y = 0,123, z = 0,296 O (8b), x = 0,334, y = 0,297, z = 0,143	Si (8b) = 1,0 Si (4a) = 1,0 O (8b) = 1,0 O (8b) = 1,0 O (8b) = 1,0	Si (8b) = 2,39 Si (4a) = 2,39 O (8b) = 2,39 O (8b) = 2,39 O (8b) = 2,39 O (8b) = 2,39	

A Figura 2 apresenta a comparação entre o difratograma experimental e simulado das amostras M1, M2, M3 e M4 através do método de Rietveld. Observase uma boa aproximação entre o padrão de difração simulado e o padrão observado, com boa definição para as intensidades e posições dos picos.

Figura 2 - Difratogramas dos materiais M1, M2, M3 e M4 experimental e simulado pelo método de Rietveld.

Os percentuais relativos das fases cristalinas obtidos pelo método de Rietveld estão apresentados na Tabela 2, que também apresenta os indicadores estatísticos numéricos R_P, R_{WP} e R_{EXP}.

Tabela 2 -	Indicadores	estatísticos	numéricos	R _P ,	R _{WP} e	R_{EXP}	e percent	uais	relativos
calculados	por Rietveld	l.das fases c	ristalinas.						

Amostra	R _P *	R _{W-P} * (%)	R _{EXP} * (%)	Percentuais Relativos das Fases Cristalinas Calculados por Rietveld					
	(%)			α -Quartzo	SiO ₂	Tridimita	Mulita	Hematita	
M1	7,41	9,97	3,32	54,89	21,32	3,31	15,91	4,58	
M2	7,27	10,23	3,19	39,90	19,92	7,20	23,25	9,73	
M3	8,92	12,39	3,22	37,76	18,66	8,39	19,95	15,24	
M4	8,66	13,0	3,18	29,11	21,11	6,05	26,56	17,14	

Quartzo e mulita foram identificados como componentes cristalinos majoritários em todas as onze amostras. Observa-se que O material M1 apresentou o maior percentual de quartzo residual após a sinterização (54,89%). O material M3 apresentou o maior percentual da fase tridimita em comparação com os demais materiais obtidos (8,39%). O material M4 apresentou os maiores percentuais de fase mulita (22,45%) e de fase hematita (14,49%).

O refinamento estrutural do material M1 apresentou o menor valor de R_{W-P} (9,97%). A convergência foi verificada através dos indices $R_P e R_{W-P}$. Apesar de $R_P e R_{W-P}$ estarem distantes de mais que os 20% recomendados, as curvas do espectro experimental e simulado apresentaram boa concordância e o valor de R_{W-P} está na faixa recomendada para bons resultados (2 $\leq R_{W-P} \geq 10$)⁽⁸⁾.

A Tabela 3 apresenta os parâmetros de rede refinados pelo Método de Rietveld apresentados pelas fases cristalinas dos materiais cerâmicos sinterizados.

Parâmetros de Rede Refinados (Å)									
Fase Amostra	α -Quartzo	SiO ₂	Tridimita	Mulita	Hematita				
M1	a = 4,931 b = a	a = 7,439 b = a	a = 4,990 b = a	a = 7,504 b = 7.765	a = 5,032 b = a				
	c = 5,422	c = 8,628	c = 8,186	c = 2,901	c = 13,773				
M2	a = 4,917	a = 7,450	a = 4,978	a = 7,529	a = 5,055				
	b = a	b = a	b = a	b = 7,742	b = a				
	c = 5,423	c = 8,524	c = 8,177	c = 2,899	c = 13,640				
M3	a = 4,9231	a = 7,4353	a = 4,9315	a = 7,5169	a = 5,0165				
	b = a	b = a	b = a	b = 7,7482	b = a				
	c = 5,4213	c = 8,5808	c = 8,1907	c = 2,8997	c = 13,7800				
M4	a = 4,9030	a = 7,4322	a = 4,9910	a = 7,5359	a = 5,0466				
	b = a	b = a	b = a	b = 7,7368	b = a				
	c = 5,4237	c = 8,5789	c = 8,1700	c = 2,8989	c = 13,9504				

Tabela 3 - Parâmetros de célula refinados de fases cristalinas dos materiais cerâmicos.

Após o refinamento estrutural das fases dos materiais, os fatores de temperatura isotrópica dos átomos permaneceram constantes. Os valores dos parâmetros de rede sofreram variações.

949

CONCLUSÕES

O método Rietveld se mostrou uma valiosa ferramenta para análises estruturais e análises quantitativas de fases. O refinamento pelo método de Rietveld apresentou-se como uma técnica de alta reprodutibilidade com vantagens do ponto de vista técnico e logístico. A possibilidade da quantificação de fases cristalinas de materiais multifásicos, bem como a obtenção de resultados quantitativos entre polimorfos de uma mesma fase, são características que justificaram a utilização do método DRX - Rietveld.

Os percentuais quantitativos das fases cristalinas foram determinados em termos de percentuais relativos, ou seja, sem considerar a fração da parte amorfa. O Método de Rietveld consegue sobrepor o espectro amorfo identificando a contribuição do background relativa à parte amorfa.

REFERÊNCIAS

1. PAIVA-SANTOS, C.O. Estudos de Cerâmicas Piezelétricas pelo método de Rietveld com dados de difração de raios X. 1990. Tese de doutorado. Instituto de Física e Química de São Carlos –Universidade de São Paulo, São Carlos, SP.

2. RIETVELD, H. M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica . n.22, p.151-1152, 1967.

3. RIETVELD, H. M., A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallographic, v.2, p.65-71, 1969.

4. YOUNG, R. A. The Rietveld Method. New York: Oxford University Press, 1993. 298p.

5. **JCPDS** (Joint Committee of Powder Diffraction Standards). Pennsylvania, USA., 1981.

6. **ICSD** (Inorganic Crystal Structure Database). Gmchin-Intitut fur Anorganishe Chemie and Fachinformationzentrum FIZ. Karlsruhe, Germany, 1995.

7. KNIESS, C.T.; PRATES, P.B.; MILANEZ, K.; KUHNEN, N.C.; RIELLA, H. Influência da adição de cinzas pesadas de carvão na resistência mecânica à flexão de revestimentos cerâmicos.. In: 50° Congresso Brasileiro de Cerâmica, 2006, Blumenau. **Anais do 50° Congresso Brasileiro de Cerâmica, 2006.**

8. MCCUSKER, L. D., VON DRELLE, R. B., COX, D. E., LOUER, D., SCARDI, P. Rietveld refinement guidelines. Journal of Applied Crystallographic. v. 32, p. 36-50, 1990.

54º Congresso Brasileiro de Cerâmica, 30 de maio a 02 de junho de 2010, Foz do Iguaçu, PR, Brasil