TERMISTOR COM COEFICIENTE DE TEMPERATURA NEGATIVO BASEADO NA CERÂMICA DE Zn₇Sb₂O₁₂ DOPADA COM METAIS DE TRANSIÇÃO

R. L. Grosso ¹*; S.R.M. Antunes ²; A. C. Antunes ²; S. Lanfredi ¹; M. A. L. Nobre ¹ ¹ Faculdade de Ciências e Tecnologia – FCT Universidade Estadual Paulista – UNESP Departamento de Física, Química e Biologia – DFQB Laboratório de Compósitos e Cerâmicas Funcionais – LaCCeF R. Roberto Simonsen 305, C. P. 467, Presidente Prudente, SP 19060-080 ² Departamento de Química – Universidade Estadual de Ponta Grossa (UEPG) CEP: 84030-900, Ponta Grossa – PR *robson_lopes01@hotmail.com

RESUMO

O antimoniato de zinco $Zn_7Sb_2O_{12}$, um óxido do grupo dos espinélios, possui potencial aplicação como pigmento, sensor e catalisador. Neste trabalho foram investigadas as propriedades elétricas da cerâmica semicondutora de $Zn_7Sb_2O_{12}$ dopada com Cu e Co, de estequiometria $Zn_4Co_2CuSb_2O_{12}$, preparada por síntese química pelo método dos precursores poliméricos modificado. A caracterização elétrica foi realizada por espectroscopia de impedância, no intervalo de frequência de 5 Hz a 13 MHz, a partir de 298 K até 967 K. A resistência do grão exibiu um comportamento termistor com coeficiente de temperatura negativo. Duas regiões distintas foram identificadas na curva de resistência versus temperatura. Cada região mostrou diferentes valores do parâmetro β do termistor, sendo igual a 3747,9 no intervalo entre 356 K e 376 K e igual a 9936 K entre 712 K e 967 K. Os coeficientes de temperatura da resistividade α calculados a 376 K e 712 K são iguais a -0,0265 K¹ e -0,0196 K¹, respectivamente.

Palavras-chave: Zn₇Sb₂O₁₂, espectroscopia de impedância, termistor NTC, espinélio, propriedades elétricas.

INTRODUÇÃO

O antimoniato de zinco, Zn₇Sb₂O₁₂, um óxido com estrutura espinélio tipo inverso, apresenta grande potencial em aplicações tecnológicas, principalmente na área de eletrocerâmicas ⁽¹⁻⁴⁾. Óxidos do tipo espinélio, com fórmula geral AB₂O₄, apresentam estrutura similar ao mineral MgAl₂O₄. Esse grupo pode ser subdividido em vários subgrupos, dependendo do tipo e distribuição dos cátions dentro da estrutura cristalina. De acordo com a distribuição dos cátions Zn²⁺, a cerâmica de

Zn₇Sb₂O₁₂ é classificada como espinélio tipo inverso, onde 2/3 dos cátions Zn²⁺ estão localizados nos sítios tetraedrais, enquanto 1/3 dos cátions Zn²⁺ e todos os cátions Sb²⁺ situam-se nos sítios octaedrais ⁽²⁾. Alguns espinélios têm potencial aplicação como cerâmicas semicondutoras. O comportamento elétrico destes materiais é típico de varistor cerâmico à base de ZnO, o qual é um dispositivo eletrocerâmico, que exibe como característica, uma elevada não linearidade na curva tensão-corrente ⁽⁵⁾. Estes materiais apresentam-se eficientes sensores de temperatura ⁽⁶⁾. Distintas propriedades elétricas e dielétricas entre as regiões de grão e contorno de grão têm sido descritas na cerâmica de Zn₇Sb₂O₁₂. Isto é uma forte evidência de que o fenômeno de contorno de grão é uma propriedades intrínsecas de termistores com coeficiente de temperatura negativo (NTC) ⁽⁴⁾.

Existem dois tipos de termistores: os termistores com coeficiente negativo de temperatura (NTC) e os termistores com coeficiente positivo de temperatura (PTC). A Figura 1 mostra o comportamento qualitativo dos termistores em relação à variação da resistência *R* com a temperatura.

Figura 1. Ilustração do comportamento termistor NTC e PTC em função da temperatura.

A resistividade e a estabilidade elétrica desses materiais dependem de alguns fatores, tais como: composição, homogeneidade, estado de oxidação dos cátions em coordenações específicas e fases secundárias. A preparação de óxidos policátions a partir dos métodos convencionais requer elevadas temperaturas de sinterização para que a reação de estado sólido seja eficiente. Temperaturas de preparação mais baixas e controle estequiométrico, adequados à obtenção de soluções sólidas de pós nanométricos, podem ser obtidos através de rotas de síntese química. Dentre os métodos de preparação de pós nanométricos, o método dos precursores poliméricos, conhecido como Pechini ⁽⁷⁾, pode ser aplicado com sucesso, pois permite a obtenção do óxido desejado com controle estequiométrico a nível molecular, além de diminuir a temperatura de sinterização.

Neste trabalho foram investigadas as propriedades elétricas da cerâmica à base de antimoniato de zinco, com estequiometria Zn₄Co₂CuSb₂O₁₂, obtida pelo método Pechini modificado. A caracterização elétrica, a alta temperatura, foi realizada pela técnica de espectroscopia de impedância.

MATERIAIS E MÉTODOS

O Zn₄Co₂CuSb₂O₁₂ foi preparado pelo do método dos precursores poliméricos modificado ⁽⁸⁾, utilizando como reagentes de partida: acetato de zinco Zn(CH₃CO₂)₂.2H₂O, nitrato de cobre II Cu(NO₃)₂, nitrato de cobalto Co(NO₃)₂, etilenoglicol HOCH₂CH₂OH, ácido cítrico C₆H₈O₇.H₂O e óxido de antimônio Sb₂O₃. A relação entre ácido cítrico e etileno glicol foi de 60 % em massa de ácido cítrico e 40 % de etilenoglicol. Os sais de acetato de zinco, nitrato de cobre e nitrato de cobalto, assim como o ácido cítrico, foram dissolvidos em etilenoglicol a 343 K, enquanto a solução foi continuamente agitada em um béquer. Devido à baixa solubilidade do acetato de zinco em etilenoglicol foi adicionado ácido nítrico em quantidade suficiente para maior eficiência da solubilização do soluto.

Em seguida, uma quantidade estequiométrica de Sb₂O₃, bem como água destilada e excesso de ácido nítrico foram adicionados sob constante agitação e aquecimento. Após a completa dissolução do óxido, foi obtida uma solução clara e límpida, fixou-se a temperatura a 373 K promovendo a formação de uma resina polimérica (poliéster). Essa resina foi lentamente aquecida em forno tipo mufla (3 K/min) até 623 K, permanecendo nesta temperatura por uma hora. O material resultante constitui-se no precursor da fase cristalina, o qual foi desaglomerado em um almofariz de ágata e então calcinado a 1173 K durante 1 h. Por último, o pó nanométrico calcinado foi prensado uniaxialmente em forma de pastilhas e então, sinterizado a 1273 K por 2 horas.

Caracterização Elétrica

As medidas elétricas foram realizadas em uma amostra com dimensão de 7 mm de diâmetro e 4 mm de espessura, utilizando-se a técnica de espectroscopia de impedância. A limpeza da amostra foi realizada em acetona (P.A.) por vibração ultrasônica e em seguida seca em estufa a 373 K. A deposição dos eletrodos em faces opostas da pastilha foi realizada com a aplicação de pasta de platina tipo TR-7905, marca Tanaka. A eliminação da fração orgânica foi realizada a 1073 K por 30 minutos. As medidas foram realizadas em atmosfera de ar, no intervalo de frequência de 5 Hz a 13 MHz, com um potencial aplicado de 500 mV, utilizando-se um analisador de impedância Alpha N High Resolution Dielectric Analyzer da Novocontrol. A amostra foi colocada em um porta-amostras com a configuração de dois eletrodos. As medidas foram realizadas entre 298 K e 967 K. Para cada medida utilizou-se um tempo de estabilização térmica de 1 hora. As medidas de impedância do Zn₄Co₂CuSb₂O₁₂ foram realizadas em um ciclo térmico (aquecimento-resfriamento). Os dados foram analisados utilizando-se o programa Equivcrt ⁽⁹⁾.

RESULTADOS E DISCUSSÃO

A Figura 2 mostra os diagramas de impedância da cerâmica de Zn₄Co₂CuSb₂O₁₂ em várias temperaturas. Os diagramas mostram um fenômeno de descentralização, no qual o centro do semicírculo é posicionado abaixo do eixo real.

Figura 2. Diagramas de impedância do Zn₄Co₂CuSb₂O₁₂ obtido a várias temperaturas, os números 2, 3 e 4 equivalem ao log₁₀ da freqüência correspondente.

Este comportamento obedece a uma resposta empírica de Cole-Cole ⁽¹⁰⁾. Considerando as eletrocerâmicas, o fenômeno de descentralização é tipicamente correlacionado à distribuição do tempo de relaxação. Esta forma de diagrama sugere que a resposta elétrica é composta por, pelo menos, dois semicírculos, com ambas contribuições exibindo certo grau de sobreposição e descentralização.

As contribuições do grão e contorno de grão foram determinadas através do ajuste dos diagramas de impedância, utilizando-se o formalismo de Boukamp. Neste formalismo, o caráter não ideal do fenômeno de polarização é representado pelo parâmetro Q. Q pode ser interpretado como uma capacitância não ideal (C), sendo fisicamente determinada através dos parâmetros Y_o e expoente $n \text{ com } n \leq 1$. O Y_o tende a uma capacitância ideal, quando o expoente n aproxima-se do valor 1. Assim, o caráter não ideal de Q é somente associado à distribuição dos tempos de relaxação, o qual é responsável pela descentralização do semicírculo. A impedância de um circuito R $Q(Y_o, n)$ em série, no formalismo de Boukamp é dado na forma mais geral pela seguinte equação:

$$Z = R_1 + \frac{R}{1 + RY_o(j\omega)^n} \tag{A}$$

onde R_1 é ponto que intercepta a curva à alta frequência com o eixo real. Os parâmetros R, Y_o e n são extraídos do ajuste teórico dos diagramas. O parâmetro C é determinado através da seguinte equação:

$$C = R^{\left(\frac{1-n}{n}\right)} Y_{o}^{\left(\frac{1}{n}\right)}$$
(B)

O tempo de relaxação (τ) pode ser determinado pela equação τ = RC. Neste trabalho, o expoente *n* da contribuição do grão é próximo a 1, dependente da temperatura. A capacitância do grão tem sido determinada a partir de um método alternativo ^(2,3), sendo igual aos valores derivados através da equação (B), dados não mostrados. Os dados experimental e teórico do diagrama de impedância medido a 431 K são mostrados na Figura 3.

A resposta elétrica do $Zn_4Co_2CuSb_2O_{12}$ é bem representada por dois circuitos equivalentes RQ paralelos em série. A primeira contribuição (baixa frequência < 10^4 Hz) representa a contribuição do contorno de grão para a resposta elétrica. A segunda resposta (alta frequência > 10^4 Hz) corresponde às propriedades específicas do grão.

Figura 3. Curvas teórica e experimental do Zn₄Co₂CuSb₂O₁₂ com correspondente circuito equivalente obtido a 431 K, os números 2 e 3 equivalem ao log₁₀ da freqüência correspondente.

A Figura 4 mostra a resistividade do grão em função da temperatura. Uma diminuição de 6 ordens de magnitude é observada com o aumento da temperatura. Esse comportamento, típico de termistores NTC, é similar ao encontrado para o espinélio tipo inverso de $Zn_7Sb_2O_{12}$ ⁽¹⁻⁴⁾. Em geral, o comportamento NTC ⁽⁶⁾ é atribuído a um mecanismo de condução do tipo *hopping* ⁽¹¹⁾. A curva exibe anomalias acima de 712 K. Esse comportamento sugere um fenômeno de transição de fase do tipo ordem-desordem, o qual requer um amplo intervalo de temperatura ⁽¹²⁾. Baseando-se, no intervalo de temperatura, outro processo físico-químico pode influenciar os fenômenos observados, como óxido-redução dos cátions de antimônio ^(1,3). A transição de fase é um fenômeno favorável devido ao caráter aberto da estrutura, e o grande número de sítios vacantes. O mecanismo de condução, sendo do tipo *hopping*, requer que cátions de valências distintas que ocupem os buracos octaedrais ⁽¹¹⁾. Em $Zn_7Sb_2O_{12}$ todos os cátions antimônios (Sb⁵⁺) ocupam sítios octaedrais. No entanto, a presença do Sb³⁺ tem sido descrita ⁽¹³⁾.

Neste ponto existe uma perda de correlação entre o mecanismo de condução e tipo de defeito, desde que o *hopping* do portador pode ocorrer entre cátion com valência diferindo da unidade. A existência do Sb⁴⁺ tem sido proposta, a qual desempenha a ligação necessária à aproximação física para o mecanismo de condução baseado no processo tipo *hopping*⁽²⁾.

Figura 4. Resistividade do grão em função da temperatura.

A Figura 5 mostra a condutividade elétrica do grão em função da temperatura. O comportamento observado segue a seguinte equação:

$$\sigma = \sigma_o \exp(-E_a/kT) \tag{C}$$

onde σ_o representa o fator pre-exponencial e E_a , $k \in T$ são, respectivamente, a energia de ativação do processo de condução, a constante de Boltzmann e a temperatura absoluta.

O diagrama de Arrhenius mostra duas regiões lineares com diferentes inclinações, posicionadas ao redor de uma região de transição. A cerâmica de $Zn_4Co_2CuSb_2O_{12}$ apresenta diferentes valores para a E_a nas regiões de baixa temperatura (\leq 376 K) e a alta temperatura (\geq 712 K), sendo iguais a 0,27 eV e 1,18 eV, respectivamente.

A anomalia observada a 712 K é muito próxima da região de anomalia observada para o $Zn_7Sb_2O_{12}$, igual a 723 K ^(1,3,4).

Dessa forma, as anomalias observadas no diagrama de Arrhenius da condutividade da cerâmica de Zn₄Co₂CuSb₂O₁₂ sugerem fenômenos de transição de fase. O fenômeno de transição pode ser atribuído ao processo de ordem-desordem, comum em alguns óxidos com estrutura de espinélio tipo inverso ⁽¹²⁾.

Figura 5. Curva logarítmica da condutividade do grão contra o recíproco da temperatura.

A relação entre resistência e temperatura para um termistor com coeficiente negativo de temperatura é expressa pela seguinte equação:

$$R_{T} = R_{N} \exp\left[\beta\left(\frac{T_{N} - T}{TT_{N}}\right)\right]$$
(D)

onde R_T é a resistência a temperatura T, R_N é a resistência a temperatura T_N conhecida, e β é um parâmetro característico do termistor. Reescrevendo e rearranjando os termos da Equação (D) β pode ser derivado por:

$$\beta = \left[\left(\frac{TT_N}{(T_N - T)} \right) \right] \ln \left(\frac{R_T}{R_N} \right)$$
(D)

A sensitividade do termistor é definida pelo coeficiente de temperatura da resistividade α , o qual pode ser expresso em função do parâmetro β , de acordo com a seguinte relação:

$$\alpha = \left(\frac{1}{R}\right) \left[\frac{d(R)}{dT}\right] = -\frac{\beta}{T^2}$$
(E)

O parâmetro β , calculado pela Equação (D) no intervalo de 356 K e 376 K, para o Zn₄Co₂CuSb₂O₁₂ é igual a 3747,9 K. Enquanto que para o intervalo de 712 K a 967 K, o valor de β é igual a 9936 K. Os coeficientes de temperatura da resistividade α calculados a 376 K e 712 K são iguais a -0,0265 K⁻¹ e -0,0196 K⁻¹, respectivamente.

CONCLUSÃO

A cerâmica de $Zn_4Co_2CuSb_2O_{12}$ apresentou comportamento termistor com coeficiente de temperatura negativo (NTC). O $Zn_4Co_2CuSb_2O_{12}$ apresenta propriedades semicondutoras, de acordo com o mecanismo tipo *hopping*. As transições de fases presentes no intervalo de temperatura entre 376 K e 712 K, podem ser associadas ao processo de ordem-desordem.

AGRADECIMENTOS

Ao apoio financeiro da FAPESP e CNPq. A Novocontrol GmbH pelas facilidades.

REFERÊNCIAS

- ⁽¹⁾ NOBRE, M. A. L.; LANFREDI, S. Thermistor ceramic with negative temperature coefficient based on Zn₇Sb₂O₁₂: an inverse spinel-type phase. **Applied Physics** Letters, v. 81, n. 3, p. 451-453, 2002.
- ⁽²⁾ NOBRE, M. A. L.; LANFREDI, S. New evidence of grain boundary phenomenon in Zn₇Sb₂O₁₂ ceramic: an analysis by impedance spectroscopy. **Materials Letters**, v. 50, p. 322-327, 2001.
- ⁽³⁾ NOBRE, M. A. L.; LANFREDI, S. Grain boundaty electric characterization of Zn₇Sb₂O₁₂ semiconducting ceramic: a negative temperature coefficient thermistor. Journal of Applied Physics, v. 93, n. 9, p. 5576-5582, 2003.

- ⁽⁴⁾ NOBRE, M. A. L.; LANFREDI, S. Electrical characterization by impedance spectroscopy of Zn₇Sb₂O₁₂ ceramic. Materials Research, v. 6, n. 2, p. 151-155, 2003.
- ⁽⁵⁾ NOBRE, M. A. L.; DIAS, A. N. C.; BALAN, A. M. O. A.; LANFREDI, S. Engenharia de microestrutura em varistor à base de ZnO: evidências de homogeneidade e correlação com reações químicas. **Cerâmica**, v. 51, p. 13-18, 2005.
- ⁽⁶⁾ BUCHANAN, R. C. **Ceramic materials for electronic**. 3. ed. Nova York: Marcel Dekker, 2004.
- ⁽⁷⁾ PECHINI, M. US PAT. Nº 3.330.697, 1967.
- ⁽⁸⁾ NOBRE, M. A. L. Varistores à Base de ZnO obtidos a partir das fases ZnSb₂O₆ e Zn₇Sb₂O₁₂: correlação entre fases, microestrutura e propriedades elétricas. 1999.
 202 f. Tese (Doutorado em Química) Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, São Carlos.
- ⁽⁹⁾ BOUKAMP, B. A. Equivalent circuit EQUIVCRT Program Users manual, v. 3, University of Twente-Holand, Enschede, 97 p., 1989.
- ⁽¹⁰⁾ COLE, KENNETH S.; COLE, ROBERT H. Dispersion and absorption in dielectrics: I. Alternating current characteristics. Journal of chemical physics, v. 9, p. 341-351, 1941.
- ⁽¹¹⁾ FAGAN, J. G.; AMARAKOON, V. R. W. Reliability and reproducibility of ceramic sensors. 1. NTC thermistors. **American Ceramic Society Bulletin**, v. 72, n. 1, p. 70-79, 1993.
- ⁽¹²⁾ HAAS, C. Phase transitions in crystals with spinel structure. **Journal of Physics and Chemistry of Solids**, v. 26, n. 8, p. 1225, 1965.
- ⁽¹³⁾ EZHILVALAVAM, S.; KUTTY, T. R. N. Low-voltage variators based on zinc antimony spinel Zn₇Sb₂O₁₂. **Applied Physics Letters**, v. 68, n. 19, p. 2693-2695, 1996.

THERMISTOR WITH NEGATIVE TEMPERATURE COEFFICIENT BASED ON Zn₇Sb₂O₁₂ CERAMIC DOPED WITH TRANSITION METALS

ABSTRACT

Zinc antimoniate Zn₇Sb₂O₁₂, an oxide of spinel group, shows great potencial for application such as pigment, sensor and catalyst. In this work was investigated the electric properties of the semiconductor ceramic Zn₇Sb₂O₁₂ doped with Cu and Co, Zn₄Co₂CuSb₂O₁₂, prepared by chemical synthesis based on the modified polymeric precursors method. Electric characterization was performed by impedance spectroscopy in the fequency range from 5 Hz to 13 MHz, at temperature from 298 K to 967 K. Grain resistence exhibits thermistor behavior with a negative temperature coefficient (NTC). Two distinct regions on the resistance curve were identified. Each region shows different thermistor characteristic parameter β being equal to *3747.9 K* between 356 K to 376 K and equal to *9936 K* between 712 K to 967 K. The temperature coefficient of the resistivity α calculated to 376 K and 712 K are equal to *-0.0265 K*¹ and *-0.0196 K*¹, respectively.

Key-words: Zn₇Sb₂O₁₂, impedance spectroscopy, NTC thermistor, spinel, electric properties.