SINTERIZAÇÃO DO COMPÓSITO BIFÁSICO Al₂O₃-YAG ADITIVADO COM Nb₂O₅

¹ CABRAL, R.F.;. ² LOURO, L. H. L.; ³ CAMPOS, J. B.; ⁴ COSTA, C. R. C, ⁵ PRADO DA SILVA; M. H.; ⁶ LIMA, E. S.

Praça general Tibúrcio, 80 – Praia Vermelha, Rio de Janeiro – RJ CEP: 22290-270

¹ricardof@ime.eb.br

^{1,2,4,6} Instituto Militar de Engenharia; ³ Centro Brasileiro de Pesquisas Físicas

RESUMO

O compósito bifásico Al₂O₃-YAG possui diversas aplicações no campo da engenharia aeronáutica e espacial, tais como em motores a jato e turbinas à gás de alta eficiência por suas excelentes propriedades em altas temperaturas. Este material também apresenta perspectivas favoráveis a seu emprego como blindagem, devido a sua elevada dureza e resistência à abrasão. Foram preparados pós de Al₂O₃ e do compósito Al₂O₃-YAG, ambos aditivados com 4% em peso de Nb₂O₅. Os corpos verdes foram compactados a 70 MPa e sinterizados a 1450 °C, por 3h. Estes produtos foram caracterizados por difração de raios-X com quantificação de fases por Rietveld, microscopia eletrônica de varredura e densidade por arquimedes. O Al₂O₃ aditivado com Nb₂O₅ apresentou uma densidade de 96% enquanto que para o compósito, a densificação foi de 60%, indicando ser necessário, ainda, a otimização de seu processamento.

Palavras-chave: Compósito, sinterização, Al₂O₃-YAG, Nb₂O₅ e Rietveld 1. INTRODUÇÃO

Os óxidos cerâmicos apresentam como vantagem em relação a outros cerâmicos uma alta resistência à oxidação e à corrosão em ambientes

agressivos e em elevadas temperaturas ⁽¹⁾. Estudos desenvolvidos na década de 90 ^(2, 3) mostraram o YAG (Y₃Al₅O₁₂ – "Yttrium Aluminum Garnet") como o óxido de maior resistência à fluência até então conhecido. Esse composto também é um componente em potencial nos compósitos cerâmicos óxidos, tanto como matriz quanto como reforço. O compósito Al₂O₃-YAG é atrativo pois ambos resistem à vaporização em baixas pressões parciais de O₂, possuem estabilidade química quando em contato, exibem coeficiente de expansão térmica semelhantes, quando submetidos até a temperatura de fusão não sofrem mudança de fase e formam um eutético que permite um processamento por fusão ^(2, 3). Várias pesquisas confirmaram a integridade mecânica deste material em temperaturas acima de 1500 °C ^(2, 3, 4).

O diagrama de fases mais atual do sistema AI_2O_3 - Y_2O_3 ⁽²⁾, mostrado na FIG. 1.1, é formado pelos compostos YAG, YAP (YAIO₃ – "Yttrium Aluminum Perovskite") e YAM (Y₄AI₂O₉ – "Yttrium Aluminum Monoclinic"). As linhas cheias representam o diagrama de equilíbrio eutético estável, onde a composição eutética de 18,5 mol% de Y₂O₃ e 81,5 mol% de AI₂O₃, permite a formação do compósito AI₂O₃-YAG, que possui temperatura de fusão de 1824 °C. As linhas pontilhadas representam a reação eutética metaestável, cuja composição de 77 mol% de AI₂O₃ e 23 mol% de Y₂O₃ possibilita obter as fases AI₂O₃-YAP à 1702 °C ^(2, 3, 4).

O objetivo desta pesquisa foi produzir o compósito bifásico Al₂O₃-YAG em pó e sinterizá-lo em presença de fase líquida com o uso da nióbia (Nb₂O₅) como aditivo de sinterização. E ainda comparar com a sinterização do Al₂O₃ aditivado com Nb₂O₅.

2. PROCEDIMENTOS EXPERIMENTAIS

Os pós de AI_2O_3 e Y_2O_3 foram misturados na proporção em peso de 63,65% de AI_2O_3 e 36,35% de Y_2O_3 , que correspondem a 79,5 e 20,5% em mols, respectivamente, conforme a TAB. 2.1 e a FIG. 1.1. Por meio da regra das misturas (EQ. 2.1), foi obtida a densidade teórica da mistura AI_2O_3 - Y_2O_3 . Para esta medida, foi usada a densidade teórica das fases presentes (ICSD), sendo então obtido o valor de 4,33 g/cm³.

FIG. 1.1 Porção rica em Al₂O₃ do sistema Al₂O₃-Y₂O₃⁽⁴⁾

TAB. 2.1 Proporção estequiométrica da mistura Al₂O₃-Y₂O₃

Mistura Al ₂ O ₃ - Y ₂ O ₃	Densidade (g/cm ³)	Mols(%)	Peso Molecular(g)	Peso(%)
Y_2O_3	5,06	20,50	46,29	36,35
AI_2O_3	4,00	79,50	81,06	63,65
	4,33	Total	127,35	1,00

$$\rho = \frac{1}{\sum_{i} \frac{W_{i}}{\rho_{i}}}$$
(2.1)

onde: i é a i-ésima fase,

wi, o percentual em peso da fase i

A moagem foi realizada em moinho de bolas planetário Retsch, modelo PM-400, equipado com copos de aço de 10 cm de diâmetro interno e volume de 500 ml, revestidos internamente com WC. Os corpos de moagem utilizados foram bolas de Al₂O₃ com diâmetros na faixa de 2 a 3 mm.

Com o término da moagem, os pós foram postos em bandejas de vidro do tipo pirex e levados para a estufa à uma temperatura em torno de 120 °C secos por 48h. Após a secagem, os pós foram desaglomerados em gral e pistilo de

 AI_2O_3 e passados em peneira de 80 mesh (0,177 mm), por meio de um vibrador de peneiras, modelo TWB.

Foi preparada a mistura de Al_2O_3 -YAG com Nb_2O_5 , a partir de 96g de Al_2O_3 -YAG e 4g de Nb_2O_5 . Também foi preparada mais uma mistura, Al_2O_3 - Nb_2O_5 , com 96% em peso de Al_2O_3 e 4% em peso de Nb_2O_5 .

O tempo de moagem foi maior, de 4 h, para garantir uma redução do tamanho de partícula dos pós, que foram produzidos na condição de desaglomerado somente. Os pós de Al₂O₃-YAG foram produzidos de acordo com procedimentos descritos anteriormente ⁽⁵⁾. Os procedimentos para secagem, desaglomeração e peneiramento foram os mesmos utilizados anteriormente.

Nesta pesquisa, foi realizada uma prensagem uniaxial de 70 MPa, com 20s de aplicação de carga em uma máquina universal de ensaios EMIC, modelo DL 10000. Foram sinterizadas no forno NETZSCH, modelo 417/1, com taxa de aquecimento e resfriamento de 10 °C/min, em atmosfera a ar, à 1450° C, com 2, 3 e 4h de patamar.

As análises por difração de raios-X foram realizadas nos corpos de prova sinterizados, em difratômetro PANalytical, modelo X'Pert Pro. Utilizou-se radiação CuK α de comprimento de onda 1,5453Å, com uma tensão de tubo de 40 kV, corrente de 40 mA e varredura com 20 entre 20 e 80°. O tempo de coleta das amostras sinterizadas foi de 5s por passo, com 1°, 1° e 0,3° para a fenda incidente, divergente e programável, respectivamente. As análises por difração foram complementadas por refinamento de Rietveld para a quantificação de fases, usando o programa Topas versão acadêmica. Este método utiliza um algoritmo baseado no ajuste de curvas por mínimos quadrados ^(6, 7, 8).

A densidade foi obtida por meio do quociente da densidade de massa aparente (dma) pela densidade teórica (ρ_r). A densidade de massa aparente (dma) foi determinada pelo princípio de Arquimedes, de acordo com a norma NBR 6220 da ABNT (Associação Brasileira de Normas Técnicas). A densidade teórica (ρ_r) foi calculada pela regra das misturas (EQ. 2.1). Os valores de percentual em peso e densidade da fase i (wi e pi, respectivamente), são fornecidos pela metodologia de Rietveld. Para a medida de densidade de

4

massa aparente (dma) foi usada uma balança do tipo METTLER, modelo AE 200, com precisão de 1 x 10⁻⁴ g.

As amostras sinterizadas foram recobertas com ouro por 3 min na evaporadora Balzers, modelo FL-9496 e observadas no MEV (Microscópio Eletrônico de Varredura), JEOL, modelo JSM-5800 LV, equipado com o EDS ("Energy Dispersive X-ray Spectrometer" - Espectrômetro de Dispersão de Energia"), Noran System SIX, modelo 200.

3. RESULTADOS E DISCUSSÃO

3.1 Quantificação de fases por Rietveld

A TAB. 3.1, apresenta a quantificação de fases do compósito AI_2O_3 -YAG com Nb₂O₅ pelo método de Rietveld, do AI_2O_3 com Nb₂O₅.

O percentual de Al₂O₃ presente no primeiro material situou-se acima de 62%. Este valor é superior ao esperado para este compósito, como pode ser visualizado na TAB. 3.2. Esta tabela apresenta a densidade teórica, número de mols, peso molecular e o percentual em peso do Al₂O₃ e do YAG. Este resultado deve-se à aditivação secundária oriunda das bolas de moagem de Al₂O₃ ⁽⁵⁾, tanto na moagem da mistura inicial quanto na do compósito.

A amostra de Al_2O_3 mais Nb_2O_5 apresentou a formação de 1,17% em peso de $AINbO_4$ e a presença de 1,39% de Nb_2O_5 , já em outras pesquisas ^(9, 10, 11), houve a formação completa do $AINbO_4$. Provavelmente deveria ter sido usada uma temperatura de sinterização maior e uma taxa de aquecimento mais lenta, a fim de reagir todo o Nb_2O_5 com o Al_2O_3 para a completa formação do $AINbO_4$.

No compósito Al_2O_3 -YAG mais Nb_2O_5 houve ainda a formação da fase YNbO₄, com valores em peso entre 4,28 e 7,05%. Porém, não houve a formação de AlNbO₄, como observada na amostra de Al_2O_3 sinterizada com Nb_2O_5 , provavelmente devido ao Y ter se ligado preferencialmente ao Nb em relação ao Al.

Material	Tempo(h)	Al ₂ O ₃ (%)	YAG(%)	Nb ₂ O ₅ (%)	YNbO ₄ (%)	AINbO ₄ (%)
* SYN	2	63,22	30,20	0,00	6,58	0,00
	3	64,35	31,40	0,00	4,28	0,00
	4	63,21	29,70	0,00	7,05	0,00
[#] SAN	3	97,44	-	1,39	-	1,17

TAB. 3.1 Quantificação de fases pelo método de Rietveld

* Al₂O₃-YAG sinterizado com Nb₂O₅, [#] Al₂O₃ sinterizado com Nb₂O₅

TAB. 3.2 Proporção estequiométrica em peso do compósito Al₂O₃-YAG

Mistura AY	Densidade (g/cm ³)	Número de mols	Peso Molecular (g)	Peso(%)
$Y_3AI_5O_{12}$	4,53	13,67	81,13	63,65
Al ₂ O ₃	3,97	45,33	46,22	36,35
	4,31	Total	127,35	1,00

3.2 Densidade

Na FIG. 3.1 são apresentados os valores da densidade do compósito sinterizado AI_2O_3 -YAG com Nb_2O_5 e também do AI_2O_3 sinterizado com Nb_2O_5 .

O Al₂O₃ sinterizado com Nb₂O₅ apresentou uma densidade de 96% o que corrobora os resultados já descritos para este material ^(9, 10 e 11). Este resultado satisfatório deve-se à formação da fase líquida AlNbO₄, que molhou os grãos de Al₂O₃ ajudando no processo de sinterização ^(12, 13).

A densificação das amostras com YAG, entretanto, foi pouco efetiva. Esse efeito provavelmente é devido ao tamanho médio de partículas, que foi de 1,74 µm para a mistura final de Al₂O₃-Y₂O₃ (12). Além disso, a temperatura de sinterização de 1450 °C possivelmente foi baixa.

A baixa densificação do compósito Al_2O_3 -YAG sinterizado com Nb_2O_5 pode ser atribuído também, à presença do YNbO₄, que provavelmente inibiu a sinterização. Aparentemente, esta fase não molhou as partículas do compósito, o que mantém os poros maiores, com tendência de maior coordenação. Poros deste tipo tendem a crescer, e não a desaparecer ^(12, 13). De acordo com Alckerman ⁽¹⁴⁾, esta fase funciona como um inibidor da sinterização. O autor aditivou a ZrO_2 estabilizada com Y_2O_3 com Nb_2O_5 .

FIG. 3.1 Valores de densidade do compósito sinterizado AI_2O_3 -YAG e do AI_2O_3 aditivados com 4% de Nb_2O_5 nas diferentes condições de tempo.

3.3 Caracterização morfológica

Na amostra AI_2O_3 -YAG com Nb_2O_5 sinterizada, foram observadas partículas de uma fase clara por Elétrons Retroespalhados (ERE), FIG. 3.2(a) em uma matriz em tons de cinza escuro. A Espectrometria de dispersão de energia (EDS) permitiu associar a maior fração de AI à fase cinza escuro, como pode ser visualizado na FIG. 3.2(b).

No Al₂O₃ com Nb₂O₅ sinterizado, foi possível observar a presença de uma fase intergranular formada nos cortornos de grãos por Elétrons Secundários (ES), como indicada na FIG. 3.3(a). Comprovou-se, por EDS, que esta fase é rica em Nb, como ilustrado na FIG. 3.3(b). Essa observação concorda com os resultados de ERE, que associam fases ricas em elementos de maior peso atômico a tons mais claros, e aos resultados de DRX, que indicaram a presença da fase AlNbO₄. A formação desta fase líquida na sinterização permitiu maior densificação.

FIG. 3.5 (a) Imagem por BSE da amostra sinterizada Al₂O₃-YAG com Nb₂O₅, com uma região indicativa da presença de YNbO₄, com aumento de 10.000X e (b) EDS da região do contorno da partícula rica em Al

FIG. 3.6 (a) Microestrutura da mistura Al₂O₃-Nb₂O₅ sinterizada, usando SE, com os pontos indicativos do EDS, com aumento de 5.000 X e (b) EDS da fase intergranular formada rica em Nb

4 CONCLUSÕES

As amostras aditivadas com Nb₂O₅ mostraram uma densidade menor, provavelmente pela formação de YNbO₄.

No Al₂O₃ com Nb₂O₅ sinterizado a 1450 °C, houve a formação do AlNbO₄ nos contornos dos grãos que promoveu ótima densificação, de 96%.

Embora a sinterização de Al₂O₃ e YAG com Nb₂O₅ não possua referência na literatura, estes resultados mostraram que são necessários ainda ajustes nas condições de processamento e de sinterização para minimizar a sua baixa densificação.

5 REFERÊNCIAS

(1) MIZUTANI, Y.; YASUDA, H., Coupled growth of unidirectionally solidified Al₂O₃-YAG eutectic ceramics, v. 242, 2002, p. 384-392.

(2) PARTHASARATHY, T. A., MAH, T., MATSON, L. E., *Processing, structure and properties of alumina-YAG eutectic composites*, 2004, v. 5, p.380-90.

(3) LI, W.Q., GAO, L., Processing, Microstruture and mechanical properties of 25vol % YAG-Al₂O₃ nanocomposites, v. 11, 1999, p. 1073-1080.

(4) WAKU, Y., NAKAGAWA, N., High-temperature strength and thermal stability of a unidirectionally solidified Al_2O_3 -YAG eutectic composite, v. 33, 1998, p. 1217-1225.

(5) CABRAL, R. F., *Produção do compósito bifásico Al*₂O₃-YAG com *adição de Nb*₂O₅, Tese de M. C., IME, Rio de Janeiro, RJ, Brasil, 2008.

(6) YOUNG, R. A., *The Rietveld Method*, Orford University Press, USA, 2005.

(7) ORTIZ, A. L., SÁNCHEZ-BAJO, F., PADTURE, N. P., CUMBRERA, F. L., GUIBERTEAU, F., Quantitative Polytype-Composition Analyses of SiC Using X-Ray Diffraction: a Critical Comparison Between the Polymorphic and the Rietveld Methods, Journal of the European Ceramic Society, v. 21, p. 1237-48, 2001.

(8) JIMÉNEZ, A. H., ORTIZ, A. L., BAJO, F. S. and GUIBERTEAU F., Determination of Lattice Parameters of Polytypes in Liquid-Phase-Sintered SiC Using the Rietveld Method, Journal of American Ceramic Society, v. 87, n. 5, p. 943-949, 2004.

(9) GOMES, A. V., *Comportamento balístico da alumina com adição de nióbia e variação da geometria do alvo*, Tese de D. C., IME, Rio de Janeiro, RJ, Brasil, 2004.

(10) SANTOS, W. N., Effect of addition of niobium oxide on the thermal conductivity of alumina, v. 18, 1998, p. 807-811.

(11) JIN, X. H, GAO, L., CHEN, Y. R., YUAN, Q. M., Effect of Nb_2O_5 addition on the sinterability, microstructure and mechanical behaviour of ZTM- Al_2O_3

(12) GERMAN, R. M., *Sintering Theory and Practice*, John Wiley & Sons, New York, 1996.

(13) BARSOUM, M. W., *Fundamentals of Ceramics*, The Mc Graw-Hill Companies Inc., 1997.

(14) ACKERMAN, J. F., SPITSBERG, I., VENKATARAMANI, V. S., DAROLINA, R., Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication, European patent EP 1295965, 2003

SINTERING OF AI₂O₃-YAG BIPHASIC COMPOSITE ADDED BY Nb₂O₅

ABSTRACT

SINTERING OF Al₂O₃-YAG BIPHASIC COMPOSITE ADDED BY Nb₂O₅

The two-phase composite Al_2O_3 -YAG presents diverse applications in the field of aeronautical and space engineering, such as in jet engines spurt and gas turbines, due to itsf high efficiency and excellent properties at high temperatures. This material also presents favorable perspectives to be used as shield, due to high hardness and resistance to the abrasion. Al_2O_3 and Al_2O_3 -YAG composite were prepared, both with 4% in weight of Nb₂O₅. The green bodies were compact at 70 MPa and sintered at 1450 °C for 3h. These products were characterised by X-ray diffraction with quantification by He Rietveld method, scanning electron microscopy and density by the Archimedes method. Al_2O_3 with Nb₂O₅ samples presented a density of 96% whereas for the composite, the densification was of 60%, indicating that processing optimization must by improved.

Key-words (em inglês): Composite, sintering, Al2O3-YAG, Nb2 O5, Rietveld

Key-words: Composite, sintering, Al₂O₃-YAG, Nb₂O₅, Rietveld